Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control
Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonafla...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-10, Vol.17 (10), p.e0276556-e0276556 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0276556 |
---|---|
container_issue | 10 |
container_start_page | e0276556 |
container_title | PloS one |
container_volume | 17 |
creator | Molo, Megan S White, James B Cornish, Vicki Gell, Richard M Baars, Oliver Singh, Rakhi Carbone, Mary Anna Isakeit, Thomas Wise, Kiersten A Woloshuk, Charles P Bluhm, Burton H Horn, Bruce W Heiniger, Ron W Carbone, Ignazio |
description | Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies. |
doi_str_mv | 10.1371/journal.pone.0276556 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2729490870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724258948</galeid><sourcerecordid>A724258948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjPloksYLYVj8GFhY8Os2pO1JJ0uadJN2cW_87bYzVXZkLyQXSU6e857Dm5NlzzFaYyrw26swRq_dug8e1ogIzhh_kJ1iScmKE0Qf3jmfZE9SukKI0ZLzx9kJ5RThkuHT7Ncm3XYdDNHW2uXOetAt5NYPMbQRUrLB59o3eYQ6dJX1epgj1ud96Ee3v6U8mHyTeoitdW5MuXH6Zkzv8m3Xu0n2wJgQ88oGF9p9pTrMJdzT7JHRLsGzZT_Lvn_88O388-ri8tP2fHOxqjmiw8oYVBKJRAVINrhEhiKKGyYNFKRCRYkaoRnwCsuGcFGwSjTYCFMBcA0NSHqWvTjo9i4ktViXFBFEFhKVAk3E-4UYqw6aGqb-tFN9tJ2Otypoq45fvN2pNtwoORksilng9SIQw_UIaVCdTTU4pz2E8VCLEYpZOaEv_0Hv72ihWu1AWW_CVLeeRdVGkIKwUhaz1voealoNdHZyGYyd4kcJb44S5p-An0Orx5TU9uuX_2cvfxyzr-6wO9Bu2KXgxv33H4PFAaxjSCmC-WsyRmoe7T9uqHm01TLa9Dcz-e3N</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729490870</pqid></control><display><type>article</type><title>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Molo, Megan S ; White, James B ; Cornish, Vicki ; Gell, Richard M ; Baars, Oliver ; Singh, Rakhi ; Carbone, Mary Anna ; Isakeit, Thomas ; Wise, Kiersten A ; Woloshuk, Charles P ; Bluhm, Burton H ; Horn, Bruce W ; Heiniger, Ron W ; Carbone, Ignazio</creator><creatorcontrib>Molo, Megan S ; White, James B ; Cornish, Vicki ; Gell, Richard M ; Baars, Oliver ; Singh, Rakhi ; Carbone, Mary Anna ; Isakeit, Thomas ; Wise, Kiersten A ; Woloshuk, Charles P ; Bluhm, Burton H ; Horn, Bruce W ; Heiniger, Ron W ; Carbone, Ignazio</creatorcontrib><description>Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276556</identifier><identifier>PMID: 36301851</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Aflatoxins ; Animals ; Aspergillus ; Aspergillus flavus ; Biological control ; Biology and Life Sciences ; Biopesticides ; Carcinogens ; Chromosomes ; Computer and Information Sciences ; Corn ; Ear rot ; Gene flow ; Genetic aspects ; Genetic diversity ; Genomes ; Genotyping ; Haplotypes ; Health aspects ; Medicine and Health Sciences ; Metabolites ; Nucleotides ; Pests ; Phylogenetics ; Population ; Populations ; Production processes ; Recombination ; Research and Analysis Methods ; Sequences ; Single-nucleotide polymorphism ; Soil fertility ; Strains (organisms)</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276556-e0276556</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Molo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Molo et al 2022 Molo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</citedby><cites>FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</cites><orcidid>0000-0003-3672-4943 ; 0000-0003-2721-6656 ; 0000-0002-1952-2461 ; 0000-0002-0858-5424 ; 0000-0002-5086-2480 ; 0000-0002-4644-5086 ; 0000-0002-6809-9954 ; 0000-0001-8911-6293 ; 0000-0003-0807-0129 ; 0000-0002-3959-573X ; 0000-0001-6253-7266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620740/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620740/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Molo, Megan S</creatorcontrib><creatorcontrib>White, James B</creatorcontrib><creatorcontrib>Cornish, Vicki</creatorcontrib><creatorcontrib>Gell, Richard M</creatorcontrib><creatorcontrib>Baars, Oliver</creatorcontrib><creatorcontrib>Singh, Rakhi</creatorcontrib><creatorcontrib>Carbone, Mary Anna</creatorcontrib><creatorcontrib>Isakeit, Thomas</creatorcontrib><creatorcontrib>Wise, Kiersten A</creatorcontrib><creatorcontrib>Woloshuk, Charles P</creatorcontrib><creatorcontrib>Bluhm, Burton H</creatorcontrib><creatorcontrib>Horn, Bruce W</creatorcontrib><creatorcontrib>Heiniger, Ron W</creatorcontrib><creatorcontrib>Carbone, Ignazio</creatorcontrib><title>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</title><title>PloS one</title><description>Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.</description><subject>Aflatoxins</subject><subject>Animals</subject><subject>Aspergillus</subject><subject>Aspergillus flavus</subject><subject>Biological control</subject><subject>Biology and Life Sciences</subject><subject>Biopesticides</subject><subject>Carcinogens</subject><subject>Chromosomes</subject><subject>Computer and Information Sciences</subject><subject>Corn</subject><subject>Ear rot</subject><subject>Gene flow</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Haplotypes</subject><subject>Health aspects</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Nucleotides</subject><subject>Pests</subject><subject>Phylogenetics</subject><subject>Population</subject><subject>Populations</subject><subject>Production processes</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>Sequences</subject><subject>Single-nucleotide polymorphism</subject><subject>Soil fertility</subject><subject>Strains (organisms)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjPloksYLYVj8GFhY8Os2pO1JJ0uadJN2cW_87bYzVXZkLyQXSU6e857Dm5NlzzFaYyrw26swRq_dug8e1ogIzhh_kJ1iScmKE0Qf3jmfZE9SukKI0ZLzx9kJ5RThkuHT7Ncm3XYdDNHW2uXOetAt5NYPMbQRUrLB59o3eYQ6dJX1epgj1ud96Ee3v6U8mHyTeoitdW5MuXH6Zkzv8m3Xu0n2wJgQ88oGF9p9pTrMJdzT7JHRLsGzZT_Lvn_88O388-ri8tP2fHOxqjmiw8oYVBKJRAVINrhEhiKKGyYNFKRCRYkaoRnwCsuGcFGwSjTYCFMBcA0NSHqWvTjo9i4ktViXFBFEFhKVAk3E-4UYqw6aGqb-tFN9tJ2Otypoq45fvN2pNtwoORksilng9SIQw_UIaVCdTTU4pz2E8VCLEYpZOaEv_0Hv72ihWu1AWW_CVLeeRdVGkIKwUhaz1voealoNdHZyGYyd4kcJb44S5p-An0Orx5TU9uuX_2cvfxyzr-6wO9Bu2KXgxv33H4PFAaxjSCmC-WsyRmoe7T9uqHm01TLa9Dcz-e3N</recordid><startdate>20221027</startdate><enddate>20221027</enddate><creator>Molo, Megan S</creator><creator>White, James B</creator><creator>Cornish, Vicki</creator><creator>Gell, Richard M</creator><creator>Baars, Oliver</creator><creator>Singh, Rakhi</creator><creator>Carbone, Mary Anna</creator><creator>Isakeit, Thomas</creator><creator>Wise, Kiersten A</creator><creator>Woloshuk, Charles P</creator><creator>Bluhm, Burton H</creator><creator>Horn, Bruce W</creator><creator>Heiniger, Ron W</creator><creator>Carbone, Ignazio</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3672-4943</orcidid><orcidid>https://orcid.org/0000-0003-2721-6656</orcidid><orcidid>https://orcid.org/0000-0002-1952-2461</orcidid><orcidid>https://orcid.org/0000-0002-0858-5424</orcidid><orcidid>https://orcid.org/0000-0002-5086-2480</orcidid><orcidid>https://orcid.org/0000-0002-4644-5086</orcidid><orcidid>https://orcid.org/0000-0002-6809-9954</orcidid><orcidid>https://orcid.org/0000-0001-8911-6293</orcidid><orcidid>https://orcid.org/0000-0003-0807-0129</orcidid><orcidid>https://orcid.org/0000-0002-3959-573X</orcidid><orcidid>https://orcid.org/0000-0001-6253-7266</orcidid></search><sort><creationdate>20221027</creationdate><title>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</title><author>Molo, Megan S ; White, James B ; Cornish, Vicki ; Gell, Richard M ; Baars, Oliver ; Singh, Rakhi ; Carbone, Mary Anna ; Isakeit, Thomas ; Wise, Kiersten A ; Woloshuk, Charles P ; Bluhm, Burton H ; Horn, Bruce W ; Heiniger, Ron W ; Carbone, Ignazio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aflatoxins</topic><topic>Animals</topic><topic>Aspergillus</topic><topic>Aspergillus flavus</topic><topic>Biological control</topic><topic>Biology and Life Sciences</topic><topic>Biopesticides</topic><topic>Carcinogens</topic><topic>Chromosomes</topic><topic>Computer and Information Sciences</topic><topic>Corn</topic><topic>Ear rot</topic><topic>Gene flow</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Haplotypes</topic><topic>Health aspects</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Nucleotides</topic><topic>Pests</topic><topic>Phylogenetics</topic><topic>Population</topic><topic>Populations</topic><topic>Production processes</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>Sequences</topic><topic>Single-nucleotide polymorphism</topic><topic>Soil fertility</topic><topic>Strains (organisms)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molo, Megan S</creatorcontrib><creatorcontrib>White, James B</creatorcontrib><creatorcontrib>Cornish, Vicki</creatorcontrib><creatorcontrib>Gell, Richard M</creatorcontrib><creatorcontrib>Baars, Oliver</creatorcontrib><creatorcontrib>Singh, Rakhi</creatorcontrib><creatorcontrib>Carbone, Mary Anna</creatorcontrib><creatorcontrib>Isakeit, Thomas</creatorcontrib><creatorcontrib>Wise, Kiersten A</creatorcontrib><creatorcontrib>Woloshuk, Charles P</creatorcontrib><creatorcontrib>Bluhm, Burton H</creatorcontrib><creatorcontrib>Horn, Bruce W</creatorcontrib><creatorcontrib>Heiniger, Ron W</creatorcontrib><creatorcontrib>Carbone, Ignazio</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molo, Megan S</au><au>White, James B</au><au>Cornish, Vicki</au><au>Gell, Richard M</au><au>Baars, Oliver</au><au>Singh, Rakhi</au><au>Carbone, Mary Anna</au><au>Isakeit, Thomas</au><au>Wise, Kiersten A</au><au>Woloshuk, Charles P</au><au>Bluhm, Burton H</au><au>Horn, Bruce W</au><au>Heiniger, Ron W</au><au>Carbone, Ignazio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</atitle><jtitle>PloS one</jtitle><date>2022-10-27</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276556</spage><epage>e0276556</epage><pages>e0276556-e0276556</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36301851</pmid><doi>10.1371/journal.pone.0276556</doi><tpages>e0276556</tpages><orcidid>https://orcid.org/0000-0003-3672-4943</orcidid><orcidid>https://orcid.org/0000-0003-2721-6656</orcidid><orcidid>https://orcid.org/0000-0002-1952-2461</orcidid><orcidid>https://orcid.org/0000-0002-0858-5424</orcidid><orcidid>https://orcid.org/0000-0002-5086-2480</orcidid><orcidid>https://orcid.org/0000-0002-4644-5086</orcidid><orcidid>https://orcid.org/0000-0002-6809-9954</orcidid><orcidid>https://orcid.org/0000-0001-8911-6293</orcidid><orcidid>https://orcid.org/0000-0003-0807-0129</orcidid><orcidid>https://orcid.org/0000-0002-3959-573X</orcidid><orcidid>https://orcid.org/0000-0001-6253-7266</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-10, Vol.17 (10), p.e0276556-e0276556 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2729490870 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Aflatoxins Animals Aspergillus Aspergillus flavus Biological control Biology and Life Sciences Biopesticides Carcinogens Chromosomes Computer and Information Sciences Corn Ear rot Gene flow Genetic aspects Genetic diversity Genomes Genotyping Haplotypes Health aspects Medicine and Health Sciences Metabolites Nucleotides Pests Phylogenetics Population Populations Production processes Recombination Research and Analysis Methods Sequences Single-nucleotide polymorphism Soil fertility Strains (organisms) |
title | Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetrical%20lineage%20introgression%20and%20recombination%20in%20populations%20of%20Aspergillus%20flavus:%20Implications%20for%20biological%20control&rft.jtitle=PloS%20one&rft.au=Molo,%20Megan%20S&rft.date=2022-10-27&rft.volume=17&rft.issue=10&rft.spage=e0276556&rft.epage=e0276556&rft.pages=e0276556-e0276556&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276556&rft_dat=%3Cgale_plos_%3EA724258948%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729490870&rft_id=info:pmid/36301851&rft_galeid=A724258948&rfr_iscdi=true |