Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control

Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonafla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-10, Vol.17 (10), p.e0276556-e0276556
Hauptverfasser: Molo, Megan S, White, James B, Cornish, Vicki, Gell, Richard M, Baars, Oliver, Singh, Rakhi, Carbone, Mary Anna, Isakeit, Thomas, Wise, Kiersten A, Woloshuk, Charles P, Bluhm, Burton H, Horn, Bruce W, Heiniger, Ron W, Carbone, Ignazio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0276556
container_issue 10
container_start_page e0276556
container_title PloS one
container_volume 17
creator Molo, Megan S
White, James B
Cornish, Vicki
Gell, Richard M
Baars, Oliver
Singh, Rakhi
Carbone, Mary Anna
Isakeit, Thomas
Wise, Kiersten A
Woloshuk, Charles P
Bluhm, Burton H
Horn, Bruce W
Heiniger, Ron W
Carbone, Ignazio
description Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.
doi_str_mv 10.1371/journal.pone.0276556
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2729490870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724258948</galeid><sourcerecordid>A724258948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjPloksYLYVj8GFhY8Os2pO1JJ0uadJN2cW_87bYzVXZkLyQXSU6e857Dm5NlzzFaYyrw26swRq_dug8e1ogIzhh_kJ1iScmKE0Qf3jmfZE9SukKI0ZLzx9kJ5RThkuHT7Ncm3XYdDNHW2uXOetAt5NYPMbQRUrLB59o3eYQ6dJX1epgj1ud96Ee3v6U8mHyTeoitdW5MuXH6Zkzv8m3Xu0n2wJgQ88oGF9p9pTrMJdzT7JHRLsGzZT_Lvn_88O388-ri8tP2fHOxqjmiw8oYVBKJRAVINrhEhiKKGyYNFKRCRYkaoRnwCsuGcFGwSjTYCFMBcA0NSHqWvTjo9i4ktViXFBFEFhKVAk3E-4UYqw6aGqb-tFN9tJ2Otypoq45fvN2pNtwoORksilng9SIQw_UIaVCdTTU4pz2E8VCLEYpZOaEv_0Hv72ihWu1AWW_CVLeeRdVGkIKwUhaz1voealoNdHZyGYyd4kcJb44S5p-An0Orx5TU9uuX_2cvfxyzr-6wO9Bu2KXgxv33H4PFAaxjSCmC-WsyRmoe7T9uqHm01TLa9Dcz-e3N</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729490870</pqid></control><display><type>article</type><title>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Molo, Megan S ; White, James B ; Cornish, Vicki ; Gell, Richard M ; Baars, Oliver ; Singh, Rakhi ; Carbone, Mary Anna ; Isakeit, Thomas ; Wise, Kiersten A ; Woloshuk, Charles P ; Bluhm, Burton H ; Horn, Bruce W ; Heiniger, Ron W ; Carbone, Ignazio</creator><creatorcontrib>Molo, Megan S ; White, James B ; Cornish, Vicki ; Gell, Richard M ; Baars, Oliver ; Singh, Rakhi ; Carbone, Mary Anna ; Isakeit, Thomas ; Wise, Kiersten A ; Woloshuk, Charles P ; Bluhm, Burton H ; Horn, Bruce W ; Heiniger, Ron W ; Carbone, Ignazio</creatorcontrib><description>Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276556</identifier><identifier>PMID: 36301851</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Aflatoxins ; Animals ; Aspergillus ; Aspergillus flavus ; Biological control ; Biology and Life Sciences ; Biopesticides ; Carcinogens ; Chromosomes ; Computer and Information Sciences ; Corn ; Ear rot ; Gene flow ; Genetic aspects ; Genetic diversity ; Genomes ; Genotyping ; Haplotypes ; Health aspects ; Medicine and Health Sciences ; Metabolites ; Nucleotides ; Pests ; Phylogenetics ; Population ; Populations ; Production processes ; Recombination ; Research and Analysis Methods ; Sequences ; Single-nucleotide polymorphism ; Soil fertility ; Strains (organisms)</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276556-e0276556</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Molo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Molo et al 2022 Molo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</citedby><cites>FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</cites><orcidid>0000-0003-3672-4943 ; 0000-0003-2721-6656 ; 0000-0002-1952-2461 ; 0000-0002-0858-5424 ; 0000-0002-5086-2480 ; 0000-0002-4644-5086 ; 0000-0002-6809-9954 ; 0000-0001-8911-6293 ; 0000-0003-0807-0129 ; 0000-0002-3959-573X ; 0000-0001-6253-7266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620740/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620740/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Molo, Megan S</creatorcontrib><creatorcontrib>White, James B</creatorcontrib><creatorcontrib>Cornish, Vicki</creatorcontrib><creatorcontrib>Gell, Richard M</creatorcontrib><creatorcontrib>Baars, Oliver</creatorcontrib><creatorcontrib>Singh, Rakhi</creatorcontrib><creatorcontrib>Carbone, Mary Anna</creatorcontrib><creatorcontrib>Isakeit, Thomas</creatorcontrib><creatorcontrib>Wise, Kiersten A</creatorcontrib><creatorcontrib>Woloshuk, Charles P</creatorcontrib><creatorcontrib>Bluhm, Burton H</creatorcontrib><creatorcontrib>Horn, Bruce W</creatorcontrib><creatorcontrib>Heiniger, Ron W</creatorcontrib><creatorcontrib>Carbone, Ignazio</creatorcontrib><title>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</title><title>PloS one</title><description>Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.</description><subject>Aflatoxins</subject><subject>Animals</subject><subject>Aspergillus</subject><subject>Aspergillus flavus</subject><subject>Biological control</subject><subject>Biology and Life Sciences</subject><subject>Biopesticides</subject><subject>Carcinogens</subject><subject>Chromosomes</subject><subject>Computer and Information Sciences</subject><subject>Corn</subject><subject>Ear rot</subject><subject>Gene flow</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Haplotypes</subject><subject>Health aspects</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Nucleotides</subject><subject>Pests</subject><subject>Phylogenetics</subject><subject>Population</subject><subject>Populations</subject><subject>Production processes</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>Sequences</subject><subject>Single-nucleotide polymorphism</subject><subject>Soil fertility</subject><subject>Strains (organisms)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkl2L1DAUhoso7rr6DwQLgujFjPloksYLYVj8GFhY8Os2pO1JJ0uadJN2cW_87bYzVXZkLyQXSU6e857Dm5NlzzFaYyrw26swRq_dug8e1ogIzhh_kJ1iScmKE0Qf3jmfZE9SukKI0ZLzx9kJ5RThkuHT7Ncm3XYdDNHW2uXOetAt5NYPMbQRUrLB59o3eYQ6dJX1epgj1ud96Ee3v6U8mHyTeoitdW5MuXH6Zkzv8m3Xu0n2wJgQ88oGF9p9pTrMJdzT7JHRLsGzZT_Lvn_88O388-ri8tP2fHOxqjmiw8oYVBKJRAVINrhEhiKKGyYNFKRCRYkaoRnwCsuGcFGwSjTYCFMBcA0NSHqWvTjo9i4ktViXFBFEFhKVAk3E-4UYqw6aGqb-tFN9tJ2Otypoq45fvN2pNtwoORksilng9SIQw_UIaVCdTTU4pz2E8VCLEYpZOaEv_0Hv72ihWu1AWW_CVLeeRdVGkIKwUhaz1voealoNdHZyGYyd4kcJb44S5p-An0Orx5TU9uuX_2cvfxyzr-6wO9Bu2KXgxv33H4PFAaxjSCmC-WsyRmoe7T9uqHm01TLa9Dcz-e3N</recordid><startdate>20221027</startdate><enddate>20221027</enddate><creator>Molo, Megan S</creator><creator>White, James B</creator><creator>Cornish, Vicki</creator><creator>Gell, Richard M</creator><creator>Baars, Oliver</creator><creator>Singh, Rakhi</creator><creator>Carbone, Mary Anna</creator><creator>Isakeit, Thomas</creator><creator>Wise, Kiersten A</creator><creator>Woloshuk, Charles P</creator><creator>Bluhm, Burton H</creator><creator>Horn, Bruce W</creator><creator>Heiniger, Ron W</creator><creator>Carbone, Ignazio</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3672-4943</orcidid><orcidid>https://orcid.org/0000-0003-2721-6656</orcidid><orcidid>https://orcid.org/0000-0002-1952-2461</orcidid><orcidid>https://orcid.org/0000-0002-0858-5424</orcidid><orcidid>https://orcid.org/0000-0002-5086-2480</orcidid><orcidid>https://orcid.org/0000-0002-4644-5086</orcidid><orcidid>https://orcid.org/0000-0002-6809-9954</orcidid><orcidid>https://orcid.org/0000-0001-8911-6293</orcidid><orcidid>https://orcid.org/0000-0003-0807-0129</orcidid><orcidid>https://orcid.org/0000-0002-3959-573X</orcidid><orcidid>https://orcid.org/0000-0001-6253-7266</orcidid></search><sort><creationdate>20221027</creationdate><title>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</title><author>Molo, Megan S ; White, James B ; Cornish, Vicki ; Gell, Richard M ; Baars, Oliver ; Singh, Rakhi ; Carbone, Mary Anna ; Isakeit, Thomas ; Wise, Kiersten A ; Woloshuk, Charles P ; Bluhm, Burton H ; Horn, Bruce W ; Heiniger, Ron W ; Carbone, Ignazio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-ff082907be09d180f3031d59fe42b0480d7a5e6b19d26745b7d1f7fbee6aede93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aflatoxins</topic><topic>Animals</topic><topic>Aspergillus</topic><topic>Aspergillus flavus</topic><topic>Biological control</topic><topic>Biology and Life Sciences</topic><topic>Biopesticides</topic><topic>Carcinogens</topic><topic>Chromosomes</topic><topic>Computer and Information Sciences</topic><topic>Corn</topic><topic>Ear rot</topic><topic>Gene flow</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Haplotypes</topic><topic>Health aspects</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Nucleotides</topic><topic>Pests</topic><topic>Phylogenetics</topic><topic>Population</topic><topic>Populations</topic><topic>Production processes</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>Sequences</topic><topic>Single-nucleotide polymorphism</topic><topic>Soil fertility</topic><topic>Strains (organisms)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molo, Megan S</creatorcontrib><creatorcontrib>White, James B</creatorcontrib><creatorcontrib>Cornish, Vicki</creatorcontrib><creatorcontrib>Gell, Richard M</creatorcontrib><creatorcontrib>Baars, Oliver</creatorcontrib><creatorcontrib>Singh, Rakhi</creatorcontrib><creatorcontrib>Carbone, Mary Anna</creatorcontrib><creatorcontrib>Isakeit, Thomas</creatorcontrib><creatorcontrib>Wise, Kiersten A</creatorcontrib><creatorcontrib>Woloshuk, Charles P</creatorcontrib><creatorcontrib>Bluhm, Burton H</creatorcontrib><creatorcontrib>Horn, Bruce W</creatorcontrib><creatorcontrib>Heiniger, Ron W</creatorcontrib><creatorcontrib>Carbone, Ignazio</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molo, Megan S</au><au>White, James B</au><au>Cornish, Vicki</au><au>Gell, Richard M</au><au>Baars, Oliver</au><au>Singh, Rakhi</au><au>Carbone, Mary Anna</au><au>Isakeit, Thomas</au><au>Wise, Kiersten A</au><au>Woloshuk, Charles P</au><au>Bluhm, Burton H</au><au>Horn, Bruce W</au><au>Heiniger, Ron W</au><au>Carbone, Ignazio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control</atitle><jtitle>PloS one</jtitle><date>2022-10-27</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276556</spage><epage>e0276556</epage><pages>e0276556-e0276556</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B.sub.1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36301851</pmid><doi>10.1371/journal.pone.0276556</doi><tpages>e0276556</tpages><orcidid>https://orcid.org/0000-0003-3672-4943</orcidid><orcidid>https://orcid.org/0000-0003-2721-6656</orcidid><orcidid>https://orcid.org/0000-0002-1952-2461</orcidid><orcidid>https://orcid.org/0000-0002-0858-5424</orcidid><orcidid>https://orcid.org/0000-0002-5086-2480</orcidid><orcidid>https://orcid.org/0000-0002-4644-5086</orcidid><orcidid>https://orcid.org/0000-0002-6809-9954</orcidid><orcidid>https://orcid.org/0000-0001-8911-6293</orcidid><orcidid>https://orcid.org/0000-0003-0807-0129</orcidid><orcidid>https://orcid.org/0000-0002-3959-573X</orcidid><orcidid>https://orcid.org/0000-0001-6253-7266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-10, Vol.17 (10), p.e0276556-e0276556
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2729490870
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Aflatoxins
Animals
Aspergillus
Aspergillus flavus
Biological control
Biology and Life Sciences
Biopesticides
Carcinogens
Chromosomes
Computer and Information Sciences
Corn
Ear rot
Gene flow
Genetic aspects
Genetic diversity
Genomes
Genotyping
Haplotypes
Health aspects
Medicine and Health Sciences
Metabolites
Nucleotides
Pests
Phylogenetics
Population
Populations
Production processes
Recombination
Research and Analysis Methods
Sequences
Single-nucleotide polymorphism
Soil fertility
Strains (organisms)
title Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetrical%20lineage%20introgression%20and%20recombination%20in%20populations%20of%20Aspergillus%20flavus:%20Implications%20for%20biological%20control&rft.jtitle=PloS%20one&rft.au=Molo,%20Megan%20S&rft.date=2022-10-27&rft.volume=17&rft.issue=10&rft.spage=e0276556&rft.epage=e0276556&rft.pages=e0276556-e0276556&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276556&rft_dat=%3Cgale_plos_%3EA724258948%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729490870&rft_id=info:pmid/36301851&rft_galeid=A724258948&rfr_iscdi=true