Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells

Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-10, Vol.17 (10), p.e0276579-e0276579
Hauptverfasser: Hatipoglu, Ahmet, Menon, Deepak, Levy, Talia, Frias, Maria A, Foster, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0276579
container_issue 10
container_start_page e0276579
container_title PloS one
container_volume 17
creator Hatipoglu, Ahmet
Menon, Deepak
Levy, Talia
Frias, Maria A
Foster, David A
description Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied unsaturated fatty acids could be used to synthesize phosphatidic acid–a lipid second messenger that activates both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2). A key target of mTORC2 is Akt–a kinase that promotes survival and regulates cell metabolism. We report here that mono-unsaturated oleic acid stimulates the phosphorylation of ATP citrate lyase (ACLY) at the Akt phosphorylation site at S455 in an mTORC2 dependent manner. Inhibition of ACLY in KRas-driven cancer cells in the absence of serum resulted in loss of cell viability. We examined the impact of glutamine (Gln) deprivation in combination with inhibition of ACLY on the viability of KRas-driven cancer cells. While Gln deprivation was somewhat toxic to KRas-driven cancer cells by itself, addition of the ACLY inhibitor SB-204990 increased the loss of cell viability. However, the transaminase inhibitor aminooxyacetate was minimally toxic and the combination of SB-204990 and aminooxtacetate led to significant loss of cell viability and strong cleavage of poly-ADP ribose polymerase–indicating apoptotic cell death. This effect was not observed in MCF7 breast cancer cells that do not have a KRas mutation or in BJ-hTERT human fibroblasts which have no oncogenic mutation. These data reveal a synthetic lethality between inhibition of glutamate oxaloacetate transaminase and ACLY inhibition that is specific for KRas-driven cancer cells and the apparent metabolic reprogramming induced by activating mutations to KRas.
doi_str_mv 10.1371/journal.pone.0276579
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2727179119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723620629</galeid><doaj_id>oai_doaj_org_article_f1e75bd3e5584ca3baf10df019cae074</doaj_id><sourcerecordid>A723620629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-b74016652a709379f3623bc3f5687161163249154c4bac6ec116a32eae08a5b43</originalsourceid><addsrcrecordid>eNqNk9-LEzEQxxdRvLP6HwgGBNGH1mSzm3RfhHL4o3hwcp6-htl0tk1Jk16SPawv_utmr1Wucg-Shw2zn_lO5stMUTxndMK4ZG_Xvg8O7GTrHU5oKUUtmwfFKWt4ORYl5Q_v3E-KJzGuKa35VIjHxQkXpWhkzU-LX3O3Mq1Jxi3J0vYJNsYh6ZOx5ick4x3RASFhJEDizqUVJqOJxbQCa9KOdD6Q2G-3AWMcaN-R2dUXok0KOYvYHUQkxpHPlxDHi2BuMCuC0xiIRmvj0-JRBzbis8N3VHz78P7q7NP4_OLj_Gx2PtZCNGncyooyIeoSJG24bLrcAW8172oxlUwwJnhZNayudNWCFqhzBHiJgHQKdVvxUfFir7u1PqqDd1GVspRMNiw7NSrme2LhYa22wWwg7JQHo24DPiwVhNy8RdUxlHW74FjX00oDb6FjdNFR1uhcUA7V3h2q9e0GFxpdtsMeiR7_cWallv5GNfVUcCGywOuDQPDXPcakNiYOhoFD3-_fLfiU3qIv_0Hv7-5ALSE3YFznc109iKqZLLObVJQDNbmHymeBG6PzoHUmx48S3hwlZCbhj7SEPkY1_3r5_-zF92P21R12hWDTKvo8n3nG4jFY7UEdfIwBu78mM6qGPfnjhhr2RB32hP8G3CUEqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727179119</pqid></control><display><type>article</type><title>Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hatipoglu, Ahmet ; Menon, Deepak ; Levy, Talia ; Frias, Maria A ; Foster, David A</creator><contributor>Sun, Shi-Yong</contributor><creatorcontrib>Hatipoglu, Ahmet ; Menon, Deepak ; Levy, Talia ; Frias, Maria A ; Foster, David A ; Sun, Shi-Yong</creatorcontrib><description>Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied unsaturated fatty acids could be used to synthesize phosphatidic acid–a lipid second messenger that activates both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2). A key target of mTORC2 is Akt–a kinase that promotes survival and regulates cell metabolism. We report here that mono-unsaturated oleic acid stimulates the phosphorylation of ATP citrate lyase (ACLY) at the Akt phosphorylation site at S455 in an mTORC2 dependent manner. Inhibition of ACLY in KRas-driven cancer cells in the absence of serum resulted in loss of cell viability. We examined the impact of glutamine (Gln) deprivation in combination with inhibition of ACLY on the viability of KRas-driven cancer cells. While Gln deprivation was somewhat toxic to KRas-driven cancer cells by itself, addition of the ACLY inhibitor SB-204990 increased the loss of cell viability. However, the transaminase inhibitor aminooxyacetate was minimally toxic and the combination of SB-204990 and aminooxtacetate led to significant loss of cell viability and strong cleavage of poly-ADP ribose polymerase–indicating apoptotic cell death. This effect was not observed in MCF7 breast cancer cells that do not have a KRas mutation or in BJ-hTERT human fibroblasts which have no oncogenic mutation. These data reveal a synthetic lethality between inhibition of glutamate oxaloacetate transaminase and ACLY inhibition that is specific for KRas-driven cancer cells and the apparent metabolic reprogramming induced by activating mutations to KRas.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276579</identifier><identifier>PMID: 36269753</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adenosine diphosphate ; AKT protein ; Antibodies ; Apoptosis ; ATP ; ATP citrate lyase ; Biology and Life Sciences ; Breast cancer ; Cancer ; Cancer cells ; Cell cycle ; Cell death ; Cell metabolism ; Cell survival ; Cell viability ; Deprivation ; Endoplasmic reticulum ; Enzymes ; Fatty acids ; Fibroblasts ; Gene mutations ; Genetic aspects ; Glutamine ; Insulin ; K-Ras protein ; Ketoglutaric acid ; Kinases ; Lethality ; Lipids ; Lyases ; Medicine and Health Sciences ; Membranes ; Metabolism ; Mitochondria ; Mutation ; Oleic acid ; Oncology, Experimental ; Phosphatidic acid ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Proteins ; Rapamycin ; Research and Analysis Methods ; Ribose ; Synthesis ; Telomerase reverse transcriptase ; TOR protein ; Transaminase ; Transaminases ; Tricarboxylic acid cycle</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276579-e0276579</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Hatipoglu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Hatipoglu et al 2022 Hatipoglu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-b74016652a709379f3623bc3f5687161163249154c4bac6ec116a32eae08a5b43</citedby><cites>FETCH-LOGICAL-c669t-b74016652a709379f3623bc3f5687161163249154c4bac6ec116a32eae08a5b43</cites><orcidid>0000-0003-0900-6946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586366/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586366/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids></links><search><contributor>Sun, Shi-Yong</contributor><creatorcontrib>Hatipoglu, Ahmet</creatorcontrib><creatorcontrib>Menon, Deepak</creatorcontrib><creatorcontrib>Levy, Talia</creatorcontrib><creatorcontrib>Frias, Maria A</creatorcontrib><creatorcontrib>Foster, David A</creatorcontrib><title>Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells</title><title>PloS one</title><description>Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied unsaturated fatty acids could be used to synthesize phosphatidic acid–a lipid second messenger that activates both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2). A key target of mTORC2 is Akt–a kinase that promotes survival and regulates cell metabolism. We report here that mono-unsaturated oleic acid stimulates the phosphorylation of ATP citrate lyase (ACLY) at the Akt phosphorylation site at S455 in an mTORC2 dependent manner. Inhibition of ACLY in KRas-driven cancer cells in the absence of serum resulted in loss of cell viability. We examined the impact of glutamine (Gln) deprivation in combination with inhibition of ACLY on the viability of KRas-driven cancer cells. While Gln deprivation was somewhat toxic to KRas-driven cancer cells by itself, addition of the ACLY inhibitor SB-204990 increased the loss of cell viability. However, the transaminase inhibitor aminooxyacetate was minimally toxic and the combination of SB-204990 and aminooxtacetate led to significant loss of cell viability and strong cleavage of poly-ADP ribose polymerase–indicating apoptotic cell death. This effect was not observed in MCF7 breast cancer cells that do not have a KRas mutation or in BJ-hTERT human fibroblasts which have no oncogenic mutation. These data reveal a synthetic lethality between inhibition of glutamate oxaloacetate transaminase and ACLY inhibition that is specific for KRas-driven cancer cells and the apparent metabolic reprogramming induced by activating mutations to KRas.</description><subject>Adenosine diphosphate</subject><subject>AKT protein</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>ATP</subject><subject>ATP citrate lyase</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell metabolism</subject><subject>Cell survival</subject><subject>Cell viability</subject><subject>Deprivation</subject><subject>Endoplasmic reticulum</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fibroblasts</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Glutamine</subject><subject>Insulin</subject><subject>K-Ras protein</subject><subject>Ketoglutaric acid</subject><subject>Kinases</subject><subject>Lethality</subject><subject>Lipids</subject><subject>Lyases</subject><subject>Medicine and Health Sciences</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mutation</subject><subject>Oleic acid</subject><subject>Oncology, Experimental</subject><subject>Phosphatidic acid</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Research and Analysis Methods</subject><subject>Ribose</subject><subject>Synthesis</subject><subject>Telomerase reverse transcriptase</subject><subject>TOR protein</subject><subject>Transaminase</subject><subject>Transaminases</subject><subject>Tricarboxylic acid cycle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-LEzEQxxdRvLP6HwgGBNGH1mSzm3RfhHL4o3hwcp6-htl0tk1Jk16SPawv_utmr1Wucg-Shw2zn_lO5stMUTxndMK4ZG_Xvg8O7GTrHU5oKUUtmwfFKWt4ORYl5Q_v3E-KJzGuKa35VIjHxQkXpWhkzU-LX3O3Mq1Jxi3J0vYJNsYh6ZOx5ick4x3RASFhJEDizqUVJqOJxbQCa9KOdD6Q2G-3AWMcaN-R2dUXok0KOYvYHUQkxpHPlxDHi2BuMCuC0xiIRmvj0-JRBzbis8N3VHz78P7q7NP4_OLj_Gx2PtZCNGncyooyIeoSJG24bLrcAW8172oxlUwwJnhZNayudNWCFqhzBHiJgHQKdVvxUfFir7u1PqqDd1GVspRMNiw7NSrme2LhYa22wWwg7JQHo24DPiwVhNy8RdUxlHW74FjX00oDb6FjdNFR1uhcUA7V3h2q9e0GFxpdtsMeiR7_cWallv5GNfVUcCGywOuDQPDXPcakNiYOhoFD3-_fLfiU3qIv_0Hv7-5ALSE3YFznc109iKqZLLObVJQDNbmHymeBG6PzoHUmx48S3hwlZCbhj7SEPkY1_3r5_-zF92P21R12hWDTKvo8n3nG4jFY7UEdfIwBu78mM6qGPfnjhhr2RB32hP8G3CUEqQ</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Hatipoglu, Ahmet</creator><creator>Menon, Deepak</creator><creator>Levy, Talia</creator><creator>Frias, Maria A</creator><creator>Foster, David A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0900-6946</orcidid></search><sort><creationdate>20221021</creationdate><title>Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells</title><author>Hatipoglu, Ahmet ; Menon, Deepak ; Levy, Talia ; Frias, Maria A ; Foster, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-b74016652a709379f3623bc3f5687161163249154c4bac6ec116a32eae08a5b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine diphosphate</topic><topic>AKT protein</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>ATP</topic><topic>ATP citrate lyase</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell metabolism</topic><topic>Cell survival</topic><topic>Cell viability</topic><topic>Deprivation</topic><topic>Endoplasmic reticulum</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fibroblasts</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Glutamine</topic><topic>Insulin</topic><topic>K-Ras protein</topic><topic>Ketoglutaric acid</topic><topic>Kinases</topic><topic>Lethality</topic><topic>Lipids</topic><topic>Lyases</topic><topic>Medicine and Health Sciences</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mutation</topic><topic>Oleic acid</topic><topic>Oncology, Experimental</topic><topic>Phosphatidic acid</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Research and Analysis Methods</topic><topic>Ribose</topic><topic>Synthesis</topic><topic>Telomerase reverse transcriptase</topic><topic>TOR protein</topic><topic>Transaminase</topic><topic>Transaminases</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatipoglu, Ahmet</creatorcontrib><creatorcontrib>Menon, Deepak</creatorcontrib><creatorcontrib>Levy, Talia</creatorcontrib><creatorcontrib>Frias, Maria A</creatorcontrib><creatorcontrib>Foster, David A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatipoglu, Ahmet</au><au>Menon, Deepak</au><au>Levy, Talia</au><au>Frias, Maria A</au><au>Foster, David A</au><au>Sun, Shi-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells</atitle><jtitle>PloS one</jtitle><date>2022-10-21</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276579</spage><epage>e0276579</epage><pages>e0276579-e0276579</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied unsaturated fatty acids could be used to synthesize phosphatidic acid–a lipid second messenger that activates both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2). A key target of mTORC2 is Akt–a kinase that promotes survival and regulates cell metabolism. We report here that mono-unsaturated oleic acid stimulates the phosphorylation of ATP citrate lyase (ACLY) at the Akt phosphorylation site at S455 in an mTORC2 dependent manner. Inhibition of ACLY in KRas-driven cancer cells in the absence of serum resulted in loss of cell viability. We examined the impact of glutamine (Gln) deprivation in combination with inhibition of ACLY on the viability of KRas-driven cancer cells. While Gln deprivation was somewhat toxic to KRas-driven cancer cells by itself, addition of the ACLY inhibitor SB-204990 increased the loss of cell viability. However, the transaminase inhibitor aminooxyacetate was minimally toxic and the combination of SB-204990 and aminooxtacetate led to significant loss of cell viability and strong cleavage of poly-ADP ribose polymerase–indicating apoptotic cell death. This effect was not observed in MCF7 breast cancer cells that do not have a KRas mutation or in BJ-hTERT human fibroblasts which have no oncogenic mutation. These data reveal a synthetic lethality between inhibition of glutamate oxaloacetate transaminase and ACLY inhibition that is specific for KRas-driven cancer cells and the apparent metabolic reprogramming induced by activating mutations to KRas.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36269753</pmid><doi>10.1371/journal.pone.0276579</doi><tpages>e0276579</tpages><orcidid>https://orcid.org/0000-0003-0900-6946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-10, Vol.17 (10), p.e0276579-e0276579
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2727179119
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine diphosphate
AKT protein
Antibodies
Apoptosis
ATP
ATP citrate lyase
Biology and Life Sciences
Breast cancer
Cancer
Cancer cells
Cell cycle
Cell death
Cell metabolism
Cell survival
Cell viability
Deprivation
Endoplasmic reticulum
Enzymes
Fatty acids
Fibroblasts
Gene mutations
Genetic aspects
Glutamine
Insulin
K-Ras protein
Ketoglutaric acid
Kinases
Lethality
Lipids
Lyases
Medicine and Health Sciences
Membranes
Metabolism
Mitochondria
Mutation
Oleic acid
Oncology, Experimental
Phosphatidic acid
Phosphorylation
Physical Sciences
Physiological aspects
Proteins
Rapamycin
Research and Analysis Methods
Ribose
Synthesis
Telomerase reverse transcriptase
TOR protein
Transaminase
Transaminases
Tricarboxylic acid cycle
title Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibiting%20glutamine%20utilization%20creates%20a%20synthetic%20lethality%20for%20suppression%20of%20ATP%20citrate%20lyase%20in%20KRas-driven%20cancer%20cells&rft.jtitle=PloS%20one&rft.au=Hatipoglu,%20Ahmet&rft.date=2022-10-21&rft.volume=17&rft.issue=10&rft.spage=e0276579&rft.epage=e0276579&rft.pages=e0276579-e0276579&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276579&rft_dat=%3Cgale_plos_%3EA723620629%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727179119&rft_id=info:pmid/36269753&rft_galeid=A723620629&rft_doaj_id=oai_doaj_org_article_f1e75bd3e5584ca3baf10df019cae074&rfr_iscdi=true