Considerate motion imagination classification method using deep learning
In order to improve the classification accuracy of motion imagination, a considerate motion imagination classification method using deep learning is proposed. Specifically, based on a graph structure suitable for electroencephalography as input, the proposed model can accurately represent the distri...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-10, Vol.17 (10), p.e0276526 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e0276526 |
container_title | PloS one |
container_volume | 17 |
creator | Yan, Zhaokun Yang, Xiangquan Jin, Yu |
description | In order to improve the classification accuracy of motion imagination, a considerate motion imagination classification method using deep learning is proposed. Specifically, based on a graph structure suitable for electroencephalography as input, the proposed model can accurately represent the distribution of electroencephalography electrodes in non-Euclidean space and fully consider the spatial correlation between electrodes. In addition, the spatial-spectral-temporal multi-dimensional feature information was extracted from the spatial-temporal graph representation and spatial-spectral graph representation transformed from the original electroencephalography signal using the dual branch architecture. Finally, the attention mechanism and global feature aggregation module were designed and combined with graph convolution to adaptively capture the dynamic correlation intensity and effective feature of electroencephalography signals in various dimensions. A series of contrast experiments and ablation experiments on several different public brain-computer interface datasets demonstrated that the excellence of proposed method. It is worth mentioning that, the proposed model is a general framework for the classification of electroencephalography signals, which is suitable for emotion recognition, sleep staging and other fields based on electroencephalography research. Moreover, the model has the potential to be applied in the medical field of motion imagination rehabilitation in real life. |
doi_str_mv | 10.1371/journal.pone.0276526 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2726903963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723480788</galeid><doaj_id>oai_doaj_org_article_4039cc91790a49e0952b5a72b2e08d71</doaj_id><sourcerecordid>A723480788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b274fcc9ccb21f6fc2f98fd63d528bf124436c8e139127bbb9182903cc8356213</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QHBNGLGfPR5uNGWAZ1BxYW_LoNaZp0MqTJbNKK_nvTme4ylb2QXjRJn_c9OadvUbyEYAUxhR92YYheutU-eL0CiJIKkUfFOeQYLQkC-PHJ-qx4ltIOgAozQp4WZ5ggUrKKnhdX6-CTbXSUvV50obfBL2wnW-vlYa2cTMkaq47bTvfb0CyGZH27aLTeL5yW0efd8-KJkS7pF9P7ovjx-dP39dXy-ubLZn15vVSEo35ZI1oapbhSNYKGGIUMZ6YhuKkQqw1EZYmJYhpiDhGt65pDhjjASjFcEQTxRfH66Lt3IYlpCEkgikjGOMGZ2ByJJsid2MfcTvwjgrTicBBiK2TsrXJalFmRLwMpB7LkGvAK1ZWkqEYasIaO1T5O1Ya6043Svo_SzUznX7zdijb8ErxiZQVGg3eTQQy3g0696GxS2jnpdRgO96YEUwRJRt_8gz7c3US1MjdgvQm5rhpNxSVFuGSAMpap1QNUfhrdWZUTY2w-nwnezwSZ6fXvvpVDSmLz7ev_szc_5-zbE3arpeu3KbhhTFOag-URVDGkFLW5HzIEYgz83TTEGHgxBT7LXp3-oHvRXcLxX3kV-k4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726903963</pqid></control><display><type>article</type><title>Considerate motion imagination classification method using deep learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yan, Zhaokun ; Yang, Xiangquan ; Jin, Yu</creator><contributor>Vicent, José F.</contributor><creatorcontrib>Yan, Zhaokun ; Yang, Xiangquan ; Jin, Yu ; Vicent, José F.</creatorcontrib><description>In order to improve the classification accuracy of motion imagination, a considerate motion imagination classification method using deep learning is proposed. Specifically, based on a graph structure suitable for electroencephalography as input, the proposed model can accurately represent the distribution of electroencephalography electrodes in non-Euclidean space and fully consider the spatial correlation between electrodes. In addition, the spatial-spectral-temporal multi-dimensional feature information was extracted from the spatial-temporal graph representation and spatial-spectral graph representation transformed from the original electroencephalography signal using the dual branch architecture. Finally, the attention mechanism and global feature aggregation module were designed and combined with graph convolution to adaptively capture the dynamic correlation intensity and effective feature of electroencephalography signals in various dimensions. A series of contrast experiments and ablation experiments on several different public brain-computer interface datasets demonstrated that the excellence of proposed method. It is worth mentioning that, the proposed model is a general framework for the classification of electroencephalography signals, which is suitable for emotion recognition, sleep staging and other fields based on electroencephalography research. Moreover, the model has the potential to be applied in the medical field of motion imagination rehabilitation in real life.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276526</identifier><identifier>PMID: 36264857</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Algorithms ; Analysis ; Biology and Life Sciences ; Brain ; Brain-Computer Interfaces ; Classification ; Computational linguistics ; Computer and Information Sciences ; Computer applications ; Correlation ; Deep Learning ; EEG ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Emotion recognition ; Engineering and Technology ; Euclidean geometry ; Euclidean space ; Feature extraction ; Graph representations ; Graphical representations ; Human-computer interface ; Imagination ; Imagination (Philosophy) ; Implants ; Interfaces ; Language processing ; Machine learning ; Medicine and Health Sciences ; Mental task performance ; Methods ; Natural language interfaces ; Neural networks ; Rehabilitation ; Research and Analysis Methods ; Signal classification ; Social Sciences ; User interface ; Wavelet transforms</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276526</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Yan et al 2022 Yan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b274fcc9ccb21f6fc2f98fd63d528bf124436c8e139127bbb9182903cc8356213</citedby><cites>FETCH-LOGICAL-c692t-b274fcc9ccb21f6fc2f98fd63d528bf124436c8e139127bbb9182903cc8356213</cites><orcidid>0000-0002-8411-5395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36264857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vicent, José F.</contributor><creatorcontrib>Yan, Zhaokun</creatorcontrib><creatorcontrib>Yang, Xiangquan</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><title>Considerate motion imagination classification method using deep learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In order to improve the classification accuracy of motion imagination, a considerate motion imagination classification method using deep learning is proposed. Specifically, based on a graph structure suitable for electroencephalography as input, the proposed model can accurately represent the distribution of electroencephalography electrodes in non-Euclidean space and fully consider the spatial correlation between electrodes. In addition, the spatial-spectral-temporal multi-dimensional feature information was extracted from the spatial-temporal graph representation and spatial-spectral graph representation transformed from the original electroencephalography signal using the dual branch architecture. Finally, the attention mechanism and global feature aggregation module were designed and combined with graph convolution to adaptively capture the dynamic correlation intensity and effective feature of electroencephalography signals in various dimensions. A series of contrast experiments and ablation experiments on several different public brain-computer interface datasets demonstrated that the excellence of proposed method. It is worth mentioning that, the proposed model is a general framework for the classification of electroencephalography signals, which is suitable for emotion recognition, sleep staging and other fields based on electroencephalography research. Moreover, the model has the potential to be applied in the medical field of motion imagination rehabilitation in real life.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain-Computer Interfaces</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Correlation</subject><subject>Deep Learning</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Emotion recognition</subject><subject>Engineering and Technology</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Feature extraction</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Human-computer interface</subject><subject>Imagination</subject><subject>Imagination (Philosophy)</subject><subject>Implants</subject><subject>Interfaces</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Mental task performance</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Rehabilitation</subject><subject>Research and Analysis Methods</subject><subject>Signal classification</subject><subject>Social Sciences</subject><subject>User interface</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QHBNGLGfPR5uNGWAZ1BxYW_LoNaZp0MqTJbNKK_nvTme4ylb2QXjRJn_c9OadvUbyEYAUxhR92YYheutU-eL0CiJIKkUfFOeQYLQkC-PHJ-qx4ltIOgAozQp4WZ5ggUrKKnhdX6-CTbXSUvV50obfBL2wnW-vlYa2cTMkaq47bTvfb0CyGZH27aLTeL5yW0efd8-KJkS7pF9P7ovjx-dP39dXy-ubLZn15vVSEo35ZI1oapbhSNYKGGIUMZ6YhuKkQqw1EZYmJYhpiDhGt65pDhjjASjFcEQTxRfH66Lt3IYlpCEkgikjGOMGZ2ByJJsid2MfcTvwjgrTicBBiK2TsrXJalFmRLwMpB7LkGvAK1ZWkqEYasIaO1T5O1Ya6043Svo_SzUznX7zdijb8ErxiZQVGg3eTQQy3g0696GxS2jnpdRgO96YEUwRJRt_8gz7c3US1MjdgvQm5rhpNxSVFuGSAMpap1QNUfhrdWZUTY2w-nwnezwSZ6fXvvpVDSmLz7ev_szc_5-zbE3arpeu3KbhhTFOag-URVDGkFLW5HzIEYgz83TTEGHgxBT7LXp3-oHvRXcLxX3kV-k4</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Yan, Zhaokun</creator><creator>Yang, Xiangquan</creator><creator>Jin, Yu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8411-5395</orcidid></search><sort><creationdate>20221020</creationdate><title>Considerate motion imagination classification method using deep learning</title><author>Yan, Zhaokun ; Yang, Xiangquan ; Jin, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b274fcc9ccb21f6fc2f98fd63d528bf124436c8e139127bbb9182903cc8356213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain-Computer Interfaces</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Correlation</topic><topic>Deep Learning</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Emotion recognition</topic><topic>Engineering and Technology</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Feature extraction</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Human-computer interface</topic><topic>Imagination</topic><topic>Imagination (Philosophy)</topic><topic>Implants</topic><topic>Interfaces</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Mental task performance</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Rehabilitation</topic><topic>Research and Analysis Methods</topic><topic>Signal classification</topic><topic>Social Sciences</topic><topic>User interface</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zhaokun</creatorcontrib><creatorcontrib>Yang, Xiangquan</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zhaokun</au><au>Yang, Xiangquan</au><au>Jin, Yu</au><au>Vicent, José F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Considerate motion imagination classification method using deep learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-10-20</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276526</spage><pages>e0276526-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In order to improve the classification accuracy of motion imagination, a considerate motion imagination classification method using deep learning is proposed. Specifically, based on a graph structure suitable for electroencephalography as input, the proposed model can accurately represent the distribution of electroencephalography electrodes in non-Euclidean space and fully consider the spatial correlation between electrodes. In addition, the spatial-spectral-temporal multi-dimensional feature information was extracted from the spatial-temporal graph representation and spatial-spectral graph representation transformed from the original electroencephalography signal using the dual branch architecture. Finally, the attention mechanism and global feature aggregation module were designed and combined with graph convolution to adaptively capture the dynamic correlation intensity and effective feature of electroencephalography signals in various dimensions. A series of contrast experiments and ablation experiments on several different public brain-computer interface datasets demonstrated that the excellence of proposed method. It is worth mentioning that, the proposed model is a general framework for the classification of electroencephalography signals, which is suitable for emotion recognition, sleep staging and other fields based on electroencephalography research. Moreover, the model has the potential to be applied in the medical field of motion imagination rehabilitation in real life.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36264857</pmid><doi>10.1371/journal.pone.0276526</doi><tpages>e0276526</tpages><orcidid>https://orcid.org/0000-0002-8411-5395</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-10, Vol.17 (10), p.e0276526 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2726903963 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Ablation Algorithms Analysis Biology and Life Sciences Brain Brain-Computer Interfaces Classification Computational linguistics Computer and Information Sciences Computer applications Correlation Deep Learning EEG Electrodes Electroencephalography Electroencephalography - methods Emotion recognition Engineering and Technology Euclidean geometry Euclidean space Feature extraction Graph representations Graphical representations Human-computer interface Imagination Imagination (Philosophy) Implants Interfaces Language processing Machine learning Medicine and Health Sciences Mental task performance Methods Natural language interfaces Neural networks Rehabilitation Research and Analysis Methods Signal classification Social Sciences User interface Wavelet transforms |
title | Considerate motion imagination classification method using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Considerate%20motion%20imagination%20classification%20method%20using%20deep%20learning&rft.jtitle=PloS%20one&rft.au=Yan,%20Zhaokun&rft.date=2022-10-20&rft.volume=17&rft.issue=10&rft.spage=e0276526&rft.pages=e0276526-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276526&rft_dat=%3Cgale_plos_%3EA723480788%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726903963&rft_id=info:pmid/36264857&rft_galeid=A723480788&rft_doaj_id=oai_doaj_org_article_4039cc91790a49e0952b5a72b2e08d71&rfr_iscdi=true |