DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes
Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omics data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further sat...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-10, Vol.17 (10), p.e0276253-e0276253 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0276253 |
---|---|
container_issue | 10 |
container_start_page | e0276253 |
container_title | PloS one |
container_volume | 17 |
creator | Alexandre, Leonardo Costa, Rafael S Henriques, Rui |
description | Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omics data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further satisfy delineate discriminative power properties, well-established in the presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as risk profiles and quantitative phenotypes. DISA (Discriminative and Informative Subspace Assessment), a Python software package, is proposed to evaluate patterns in the presence of numerical outcomes using well-established measures together with a novel principle able to statistically assess the correlation gain of the subspace against the overall space. Results confirm the possibility to soundly extend discriminative criteria towards numerical outcomes without the drawbacks well-associated with discretization procedures. Results from four case studies confirm the validity and relevance of the proposed methods, further unveiling critical directions for research on biotechnology and biomedicine. Availability: DISA is freely available at |
doi_str_mv | 10.1371/journal.pone.0276253 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2726368561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723246010</galeid><doaj_id>oai_doaj_org_article_115da54e0ebc490d9459ca696aca0968</doaj_id><sourcerecordid>A723246010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-4608af733876b0495b3b40735fb430253aaecd305e11f832572949fde0608b423</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4soeJ7-B4IFQfRh16RJ09YHYbnzx8LBgae-hmk63c2SNntJeup_b3qtcpV7kD60ST7zncx3OknynJI1ZQV9e7CD68Gsj7bHNckKkeXsQXJCK5atREbYwzvfj5Mn3h8IyVkpxEmC59urTRqsNe_Sc-2V053uIegbTKFvUt231nXT2g-1P4KKB96j9x32If2hwz5VEHBnnVZgboP6ocNpZYegbIf-afKoBePx2fw-Tb59_PD17PPq4vLT9mxzsVJCVGHFBSmhLRgrC1ETXuU1qzkpWN7WnJFYFACqhpEcKW1LluVFVvGqbZDEwJpn7DR5MekejfVytsXLrMgEE2UuaCS2E9FYOMhjLBfcL2lBy9sN63YSXNDKoKQ0byDnSLBWvCJNxfNKgagEKCCVKKPW-znbUHfYqGiIA7MQXZ70ei939kZWeRn7xqPA61nA2esBfZBdbAEaAz3aYbo3J5Eec738B72_upnaQSxgbF7Mq0ZRuSkylkWDKYnU-h4qPg12WsV_qNVxfxHwZhEQmYA_ww4G7-X26sv_s5ffl-yrO-wewYS9t2YI2vZ-CfIJVM5677D9azIlchyBP27IcQTkPALsNxId-HI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726368561</pqid></control><display><type>article</type><title>DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Alexandre, Leonardo ; Costa, Rafael S ; Henriques, Rui</creator><contributor>V E, Sathishkumar</contributor><creatorcontrib>Alexandre, Leonardo ; Costa, Rafael S ; Henriques, Rui ; V E, Sathishkumar</creatorcontrib><description>Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omics data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further satisfy delineate discriminative power properties, well-established in the presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as risk profiles and quantitative phenotypes. DISA (Discriminative and Informative Subspace Assessment), a Python software package, is proposed to evaluate patterns in the presence of numerical outcomes using well-established measures together with a novel principle able to statistically assess the correlation gain of the subspace against the overall space. Results confirm the possibility to soundly extend discriminative criteria towards numerical outcomes without the drawbacks well-associated with discretization procedures. Results from four case studies confirm the validity and relevance of the proposed methods, further unveiling critical directions for research on biotechnology and biomedicine. Availability: DISA is freely available at</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276253</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Availability ; Biology and Life Sciences ; Biotechnology ; Breast cancer ; Categorical variables ; Clustering ; Computer and Information Sciences ; Engineering and Technology ; Expected values ; Gene expression ; Medical diagnosis ; Medicine and Health Sciences ; Methods ; Numerical analysis ; Phenotypes ; Physical Sciences ; Public software ; Research and Analysis Methods ; Risk assessment ; Statistical significance ; Subspaces ; Variables</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276253-e0276253</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Alexandre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Alexandre et al 2022 Alexandre et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-4608af733876b0495b3b40735fb430253aaecd305e11f832572949fde0608b423</citedby><cites>FETCH-LOGICAL-c669t-4608af733876b0495b3b40735fb430253aaecd305e11f832572949fde0608b423</cites><orcidid>0000-0002-7061-4097 ; 0000-0002-7539-488X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581374/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581374/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids></links><search><contributor>V E, Sathishkumar</contributor><creatorcontrib>Alexandre, Leonardo</creatorcontrib><creatorcontrib>Costa, Rafael S</creatorcontrib><creatorcontrib>Henriques, Rui</creatorcontrib><title>DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes</title><title>PloS one</title><description>Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omics data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further satisfy delineate discriminative power properties, well-established in the presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as risk profiles and quantitative phenotypes. DISA (Discriminative and Informative Subspace Assessment), a Python software package, is proposed to evaluate patterns in the presence of numerical outcomes using well-established measures together with a novel principle able to statistically assess the correlation gain of the subspace against the overall space. Results confirm the possibility to soundly extend discriminative criteria towards numerical outcomes without the drawbacks well-associated with discretization procedures. Results from four case studies confirm the validity and relevance of the proposed methods, further unveiling critical directions for research on biotechnology and biomedicine. Availability: DISA is freely available at</description><subject>Analysis</subject><subject>Availability</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Categorical variables</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>Engineering and Technology</subject><subject>Expected values</subject><subject>Gene expression</subject><subject>Medical diagnosis</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Public software</subject><subject>Research and Analysis Methods</subject><subject>Risk assessment</subject><subject>Statistical significance</subject><subject>Subspaces</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4soeJ7-B4IFQfRh16RJ09YHYbnzx8LBgae-hmk63c2SNntJeup_b3qtcpV7kD60ST7zncx3OknynJI1ZQV9e7CD68Gsj7bHNckKkeXsQXJCK5atREbYwzvfj5Mn3h8IyVkpxEmC59urTRqsNe_Sc-2V053uIegbTKFvUt231nXT2g-1P4KKB96j9x32If2hwz5VEHBnnVZgboP6ocNpZYegbIf-afKoBePx2fw-Tb59_PD17PPq4vLT9mxzsVJCVGHFBSmhLRgrC1ETXuU1qzkpWN7WnJFYFACqhpEcKW1LluVFVvGqbZDEwJpn7DR5MekejfVytsXLrMgEE2UuaCS2E9FYOMhjLBfcL2lBy9sN63YSXNDKoKQ0byDnSLBWvCJNxfNKgagEKCCVKKPW-znbUHfYqGiIA7MQXZ70ei939kZWeRn7xqPA61nA2esBfZBdbAEaAz3aYbo3J5Eec738B72_upnaQSxgbF7Mq0ZRuSkylkWDKYnU-h4qPg12WsV_qNVxfxHwZhEQmYA_ww4G7-X26sv_s5ffl-yrO-wewYS9t2YI2vZ-CfIJVM5677D9azIlchyBP27IcQTkPALsNxId-HI</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Alexandre, Leonardo</creator><creator>Costa, Rafael S</creator><creator>Henriques, Rui</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7061-4097</orcidid><orcidid>https://orcid.org/0000-0002-7539-488X</orcidid></search><sort><creationdate>20221019</creationdate><title>DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes</title><author>Alexandre, Leonardo ; Costa, Rafael S ; Henriques, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-4608af733876b0495b3b40735fb430253aaecd305e11f832572949fde0608b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Availability</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Categorical variables</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>Engineering and Technology</topic><topic>Expected values</topic><topic>Gene expression</topic><topic>Medical diagnosis</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Public software</topic><topic>Research and Analysis Methods</topic><topic>Risk assessment</topic><topic>Statistical significance</topic><topic>Subspaces</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandre, Leonardo</creatorcontrib><creatorcontrib>Costa, Rafael S</creatorcontrib><creatorcontrib>Henriques, Rui</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandre, Leonardo</au><au>Costa, Rafael S</au><au>Henriques, Rui</au><au>V E, Sathishkumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes</atitle><jtitle>PloS one</jtitle><date>2022-10-19</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276253</spage><epage>e0276253</epage><pages>e0276253-e0276253</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omics data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further satisfy delineate discriminative power properties, well-established in the presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as risk profiles and quantitative phenotypes. DISA (Discriminative and Informative Subspace Assessment), a Python software package, is proposed to evaluate patterns in the presence of numerical outcomes using well-established measures together with a novel principle able to statistically assess the correlation gain of the subspace against the overall space. Results confirm the possibility to soundly extend discriminative criteria towards numerical outcomes without the drawbacks well-associated with discretization procedures. Results from four case studies confirm the validity and relevance of the proposed methods, further unveiling critical directions for research on biotechnology and biomedicine. Availability: DISA is freely available at</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0276253</doi><tpages>e0276253</tpages><orcidid>https://orcid.org/0000-0002-7061-4097</orcidid><orcidid>https://orcid.org/0000-0002-7539-488X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-10, Vol.17 (10), p.e0276253-e0276253 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2726368561 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Availability Biology and Life Sciences Biotechnology Breast cancer Categorical variables Clustering Computer and Information Sciences Engineering and Technology Expected values Gene expression Medical diagnosis Medicine and Health Sciences Methods Numerical analysis Phenotypes Physical Sciences Public software Research and Analysis Methods Risk assessment Statistical significance Subspaces Variables |
title | DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DISA%20tool:%20Discriminative%20and%20informative%20subspace%20assessment%20with%20categorical%20and%20numerical%20outcomes&rft.jtitle=PloS%20one&rft.au=Alexandre,%20Leonardo&rft.date=2022-10-19&rft.volume=17&rft.issue=10&rft.spage=e0276253&rft.epage=e0276253&rft.pages=e0276253-e0276253&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276253&rft_dat=%3Cgale_plos_%3EA723246010%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726368561&rft_id=info:pmid/&rft_galeid=A723246010&rft_doaj_id=oai_doaj_org_article_115da54e0ebc490d9459ca696aca0968&rfr_iscdi=true |