Ten simple rules for teaching yourself R

[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-09, Vol.18 (9), p.e1010372-e1010372
Hauptverfasser: Lawlor, Jake, Banville, Francis, Forero-Muñoz, Norma-Rocio, Hébert, Katherine, Martínez-Lanfranco, Juan Andrés, Rogy, Pierre, MacDonald, A. Andrew M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010372
container_issue 9
container_start_page e1010372
container_title PLoS computational biology
container_volume 18
creator Lawlor, Jake
Banville, Francis
Forero-Muñoz, Norma-Rocio
Hébert, Katherine
Martínez-Lanfranco, Juan Andrés
Rogy, Pierre
MacDonald, A. Andrew M
description [...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning.
doi_str_mv 10.1371/journal.pcbi.1010372
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725287405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575199</galeid><doaj_id>oai_doaj_org_article_b11c4e71aa6b4706887f7f496be1ce7e</doaj_id><sourcerecordid>A720575199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</originalsourceid><addsrcrecordid>eNqVkk2LFDEQhhtR3A_9B4INXtbDjEnnq_siLIuuA4vCup5DPiq9GTKdMekW99-bdlpxxIvkkKLqyftWhaqqFxitMRH4zTZOaVBhvTfarzHCiIjmUXWKGSMrQVj7-I_4pDrLeYtQCTv-tDohHNFWCHRaXdzBUGe_2weo0xQg1y6megRl7v3Q1w_FJENw9e2z6olTIcPz5T6vvrx_d3f1YXXz6XpzdXmzMhyjcWURb5TGrWDUMaEx4xazxiHGGNaWE0sVY8Jqi3WHjVNU85ZAo5UQznLbkPPq5UF3H2KWy5BZNqJhTSsoYoXYHAgb1Vbuk9-p9CCj8vJnIqZeqjR6E0BqjA0FgZXimgrE21Y44WjHNWADAorW28Vt0juwBoYxqXAkelwZ_L3s4zfZUcIxmZu5WARS_DpBHuXOZwMhqAHiNPeNOtQgQruCvvoL_fd06wPVqzKAH1wsvqYcCztv4gDOl_ylaBATDHez7OujB4UZ4fvYqylnufl8-x_sx2OWHliTYs4J3O9fwUjOG_irfTlvoFw2kPwAI8_L5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725287405</pqid></control><display><type>article</type><title>Ten simple rules for teaching yourself R</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Lawlor, Jake ; Banville, Francis ; Forero-Muñoz, Norma-Rocio ; Hébert, Katherine ; Martínez-Lanfranco, Juan Andrés ; Rogy, Pierre ; MacDonald, A. Andrew M</creator><creatorcontrib>Lawlor, Jake ; Banville, Francis ; Forero-Muñoz, Norma-Rocio ; Hébert, Katherine ; Martínez-Lanfranco, Juan Andrés ; Rogy, Pierre ; MacDonald, A. Andrew M</creatorcontrib><description>[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010372</identifier><identifier>PMID: 36048770</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>APL ; Biodiversity ; Biology and Life Sciences ; Blogs ; Colleges &amp; universities ; Computer and Information Sciences ; Data science ; Ecologists ; Ecology ; Education ; Engineering and Technology ; Environmental statistics ; Machine learning ; Methods ; Multivariate analysis ; Programming languages ; Sciences education ; Scientific visualization ; Skills ; Social Sciences ; Spatial analysis ; Statistical analysis ; Students ; Study and teaching ; Undergraduate study ; Visualization ; Websites ; Workshops</subject><ispartof>PLoS computational biology, 2022-09, Vol.18 (9), p.e1010372-e1010372</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Lawlor et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Lawlor et al 2022 Lawlor et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</citedby><cites>FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</cites><orcidid>0000-0002-1692-1168 ; 0000-0002-3002-0059 ; 0000-0001-9051-0597 ; 0000-0002-1499-5227 ; 0000-0001-7866-6775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><creatorcontrib>Lawlor, Jake</creatorcontrib><creatorcontrib>Banville, Francis</creatorcontrib><creatorcontrib>Forero-Muñoz, Norma-Rocio</creatorcontrib><creatorcontrib>Hébert, Katherine</creatorcontrib><creatorcontrib>Martínez-Lanfranco, Juan Andrés</creatorcontrib><creatorcontrib>Rogy, Pierre</creatorcontrib><creatorcontrib>MacDonald, A. Andrew M</creatorcontrib><title>Ten simple rules for teaching yourself R</title><title>PLoS computational biology</title><description>[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning.</description><subject>APL</subject><subject>Biodiversity</subject><subject>Biology and Life Sciences</subject><subject>Blogs</subject><subject>Colleges &amp; universities</subject><subject>Computer and Information Sciences</subject><subject>Data science</subject><subject>Ecologists</subject><subject>Ecology</subject><subject>Education</subject><subject>Engineering and Technology</subject><subject>Environmental statistics</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Programming languages</subject><subject>Sciences education</subject><subject>Scientific visualization</subject><subject>Skills</subject><subject>Social Sciences</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>Students</subject><subject>Study and teaching</subject><subject>Undergraduate study</subject><subject>Visualization</subject><subject>Websites</subject><subject>Workshops</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2LFDEQhhtR3A_9B4INXtbDjEnnq_siLIuuA4vCup5DPiq9GTKdMekW99-bdlpxxIvkkKLqyftWhaqqFxitMRH4zTZOaVBhvTfarzHCiIjmUXWKGSMrQVj7-I_4pDrLeYtQCTv-tDohHNFWCHRaXdzBUGe_2weo0xQg1y6megRl7v3Q1w_FJENw9e2z6olTIcPz5T6vvrx_d3f1YXXz6XpzdXmzMhyjcWURb5TGrWDUMaEx4xazxiHGGNaWE0sVY8Jqi3WHjVNU85ZAo5UQznLbkPPq5UF3H2KWy5BZNqJhTSsoYoXYHAgb1Vbuk9-p9CCj8vJnIqZeqjR6E0BqjA0FgZXimgrE21Y44WjHNWADAorW28Vt0juwBoYxqXAkelwZ_L3s4zfZUcIxmZu5WARS_DpBHuXOZwMhqAHiNPeNOtQgQruCvvoL_fd06wPVqzKAH1wsvqYcCztv4gDOl_ylaBATDHez7OujB4UZ4fvYqylnufl8-x_sx2OWHliTYs4J3O9fwUjOG_irfTlvoFw2kPwAI8_L5Q</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lawlor, Jake</creator><creator>Banville, Francis</creator><creator>Forero-Muñoz, Norma-Rocio</creator><creator>Hébert, Katherine</creator><creator>Martínez-Lanfranco, Juan Andrés</creator><creator>Rogy, Pierre</creator><creator>MacDonald, A. Andrew M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1692-1168</orcidid><orcidid>https://orcid.org/0000-0002-3002-0059</orcidid><orcidid>https://orcid.org/0000-0001-9051-0597</orcidid><orcidid>https://orcid.org/0000-0002-1499-5227</orcidid><orcidid>https://orcid.org/0000-0001-7866-6775</orcidid></search><sort><creationdate>20220901</creationdate><title>Ten simple rules for teaching yourself R</title><author>Lawlor, Jake ; Banville, Francis ; Forero-Muñoz, Norma-Rocio ; Hébert, Katherine ; Martínez-Lanfranco, Juan Andrés ; Rogy, Pierre ; MacDonald, A. Andrew M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>APL</topic><topic>Biodiversity</topic><topic>Biology and Life Sciences</topic><topic>Blogs</topic><topic>Colleges &amp; universities</topic><topic>Computer and Information Sciences</topic><topic>Data science</topic><topic>Ecologists</topic><topic>Ecology</topic><topic>Education</topic><topic>Engineering and Technology</topic><topic>Environmental statistics</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Programming languages</topic><topic>Sciences education</topic><topic>Scientific visualization</topic><topic>Skills</topic><topic>Social Sciences</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>Students</topic><topic>Study and teaching</topic><topic>Undergraduate study</topic><topic>Visualization</topic><topic>Websites</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawlor, Jake</creatorcontrib><creatorcontrib>Banville, Francis</creatorcontrib><creatorcontrib>Forero-Muñoz, Norma-Rocio</creatorcontrib><creatorcontrib>Hébert, Katherine</creatorcontrib><creatorcontrib>Martínez-Lanfranco, Juan Andrés</creatorcontrib><creatorcontrib>Rogy, Pierre</creatorcontrib><creatorcontrib>MacDonald, A. Andrew M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawlor, Jake</au><au>Banville, Francis</au><au>Forero-Muñoz, Norma-Rocio</au><au>Hébert, Katherine</au><au>Martínez-Lanfranco, Juan Andrés</au><au>Rogy, Pierre</au><au>MacDonald, A. Andrew M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ten simple rules for teaching yourself R</atitle><jtitle>PLoS computational biology</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010372</spage><epage>e1010372</epage><pages>e1010372-e1010372</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36048770</pmid><doi>10.1371/journal.pcbi.1010372</doi><tpages>e1010372</tpages><orcidid>https://orcid.org/0000-0002-1692-1168</orcidid><orcidid>https://orcid.org/0000-0002-3002-0059</orcidid><orcidid>https://orcid.org/0000-0001-9051-0597</orcidid><orcidid>https://orcid.org/0000-0002-1499-5227</orcidid><orcidid>https://orcid.org/0000-0001-7866-6775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-09, Vol.18 (9), p.e1010372-e1010372
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2725287405
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects APL
Biodiversity
Biology and Life Sciences
Blogs
Colleges & universities
Computer and Information Sciences
Data science
Ecologists
Ecology
Education
Engineering and Technology
Environmental statistics
Machine learning
Methods
Multivariate analysis
Programming languages
Sciences education
Scientific visualization
Skills
Social Sciences
Spatial analysis
Statistical analysis
Students
Study and teaching
Undergraduate study
Visualization
Websites
Workshops
title Ten simple rules for teaching yourself R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ten%20simple%20rules%20for%20teaching%20yourself%20R&rft.jtitle=PLoS%20computational%20biology&rft.au=Lawlor,%20Jake&rft.date=2022-09-01&rft.volume=18&rft.issue=9&rft.spage=e1010372&rft.epage=e1010372&rft.pages=e1010372-e1010372&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010372&rft_dat=%3Cgale_plos_%3EA720575199%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725287405&rft_id=info:pmid/36048770&rft_galeid=A720575199&rft_doaj_id=oai_doaj_org_article_b11c4e71aa6b4706887f7f496be1ce7e&rfr_iscdi=true