Ten simple rules for teaching yourself R
[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most l...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-09, Vol.18 (9), p.e1010372-e1010372 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010372 |
---|---|
container_issue | 9 |
container_start_page | e1010372 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Lawlor, Jake Banville, Francis Forero-Muñoz, Norma-Rocio Hébert, Katherine Martínez-Lanfranco, Juan Andrés Rogy, Pierre MacDonald, A. Andrew M |
description | [...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning. |
doi_str_mv | 10.1371/journal.pcbi.1010372 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725287405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575199</galeid><doaj_id>oai_doaj_org_article_b11c4e71aa6b4706887f7f496be1ce7e</doaj_id><sourcerecordid>A720575199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</originalsourceid><addsrcrecordid>eNqVkk2LFDEQhhtR3A_9B4INXtbDjEnnq_siLIuuA4vCup5DPiq9GTKdMekW99-bdlpxxIvkkKLqyftWhaqqFxitMRH4zTZOaVBhvTfarzHCiIjmUXWKGSMrQVj7-I_4pDrLeYtQCTv-tDohHNFWCHRaXdzBUGe_2weo0xQg1y6megRl7v3Q1w_FJENw9e2z6olTIcPz5T6vvrx_d3f1YXXz6XpzdXmzMhyjcWURb5TGrWDUMaEx4xazxiHGGNaWE0sVY8Jqi3WHjVNU85ZAo5UQznLbkPPq5UF3H2KWy5BZNqJhTSsoYoXYHAgb1Vbuk9-p9CCj8vJnIqZeqjR6E0BqjA0FgZXimgrE21Y44WjHNWADAorW28Vt0juwBoYxqXAkelwZ_L3s4zfZUcIxmZu5WARS_DpBHuXOZwMhqAHiNPeNOtQgQruCvvoL_fd06wPVqzKAH1wsvqYcCztv4gDOl_ylaBATDHez7OujB4UZ4fvYqylnufl8-x_sx2OWHliTYs4J3O9fwUjOG_irfTlvoFw2kPwAI8_L5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725287405</pqid></control><display><type>article</type><title>Ten simple rules for teaching yourself R</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Lawlor, Jake ; Banville, Francis ; Forero-Muñoz, Norma-Rocio ; Hébert, Katherine ; Martínez-Lanfranco, Juan Andrés ; Rogy, Pierre ; MacDonald, A. Andrew M</creator><creatorcontrib>Lawlor, Jake ; Banville, Francis ; Forero-Muñoz, Norma-Rocio ; Hébert, Katherine ; Martínez-Lanfranco, Juan Andrés ; Rogy, Pierre ; MacDonald, A. Andrew M</creatorcontrib><description>[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010372</identifier><identifier>PMID: 36048770</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>APL ; Biodiversity ; Biology and Life Sciences ; Blogs ; Colleges & universities ; Computer and Information Sciences ; Data science ; Ecologists ; Ecology ; Education ; Engineering and Technology ; Environmental statistics ; Machine learning ; Methods ; Multivariate analysis ; Programming languages ; Sciences education ; Scientific visualization ; Skills ; Social Sciences ; Spatial analysis ; Statistical analysis ; Students ; Study and teaching ; Undergraduate study ; Visualization ; Websites ; Workshops</subject><ispartof>PLoS computational biology, 2022-09, Vol.18 (9), p.e1010372-e1010372</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Lawlor et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Lawlor et al 2022 Lawlor et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</citedby><cites>FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</cites><orcidid>0000-0002-1692-1168 ; 0000-0002-3002-0059 ; 0000-0001-9051-0597 ; 0000-0002-1499-5227 ; 0000-0001-7866-6775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><creatorcontrib>Lawlor, Jake</creatorcontrib><creatorcontrib>Banville, Francis</creatorcontrib><creatorcontrib>Forero-Muñoz, Norma-Rocio</creatorcontrib><creatorcontrib>Hébert, Katherine</creatorcontrib><creatorcontrib>Martínez-Lanfranco, Juan Andrés</creatorcontrib><creatorcontrib>Rogy, Pierre</creatorcontrib><creatorcontrib>MacDonald, A. Andrew M</creatorcontrib><title>Ten simple rules for teaching yourself R</title><title>PLoS computational biology</title><description>[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning.</description><subject>APL</subject><subject>Biodiversity</subject><subject>Biology and Life Sciences</subject><subject>Blogs</subject><subject>Colleges & universities</subject><subject>Computer and Information Sciences</subject><subject>Data science</subject><subject>Ecologists</subject><subject>Ecology</subject><subject>Education</subject><subject>Engineering and Technology</subject><subject>Environmental statistics</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Programming languages</subject><subject>Sciences education</subject><subject>Scientific visualization</subject><subject>Skills</subject><subject>Social Sciences</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>Students</subject><subject>Study and teaching</subject><subject>Undergraduate study</subject><subject>Visualization</subject><subject>Websites</subject><subject>Workshops</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2LFDEQhhtR3A_9B4INXtbDjEnnq_siLIuuA4vCup5DPiq9GTKdMekW99-bdlpxxIvkkKLqyftWhaqqFxitMRH4zTZOaVBhvTfarzHCiIjmUXWKGSMrQVj7-I_4pDrLeYtQCTv-tDohHNFWCHRaXdzBUGe_2weo0xQg1y6megRl7v3Q1w_FJENw9e2z6olTIcPz5T6vvrx_d3f1YXXz6XpzdXmzMhyjcWURb5TGrWDUMaEx4xazxiHGGNaWE0sVY8Jqi3WHjVNU85ZAo5UQznLbkPPq5UF3H2KWy5BZNqJhTSsoYoXYHAgb1Vbuk9-p9CCj8vJnIqZeqjR6E0BqjA0FgZXimgrE21Y44WjHNWADAorW28Vt0juwBoYxqXAkelwZ_L3s4zfZUcIxmZu5WARS_DpBHuXOZwMhqAHiNPeNOtQgQruCvvoL_fd06wPVqzKAH1wsvqYcCztv4gDOl_ylaBATDHez7OujB4UZ4fvYqylnufl8-x_sx2OWHliTYs4J3O9fwUjOG_irfTlvoFw2kPwAI8_L5Q</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lawlor, Jake</creator><creator>Banville, Francis</creator><creator>Forero-Muñoz, Norma-Rocio</creator><creator>Hébert, Katherine</creator><creator>Martínez-Lanfranco, Juan Andrés</creator><creator>Rogy, Pierre</creator><creator>MacDonald, A. Andrew M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1692-1168</orcidid><orcidid>https://orcid.org/0000-0002-3002-0059</orcidid><orcidid>https://orcid.org/0000-0001-9051-0597</orcidid><orcidid>https://orcid.org/0000-0002-1499-5227</orcidid><orcidid>https://orcid.org/0000-0001-7866-6775</orcidid></search><sort><creationdate>20220901</creationdate><title>Ten simple rules for teaching yourself R</title><author>Lawlor, Jake ; Banville, Francis ; Forero-Muñoz, Norma-Rocio ; Hébert, Katherine ; Martínez-Lanfranco, Juan Andrés ; Rogy, Pierre ; MacDonald, A. Andrew M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-d062ab18754f57b156d152f05551bd63d4a557dbd1b91cfa4b683e2ba77fd6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>APL</topic><topic>Biodiversity</topic><topic>Biology and Life Sciences</topic><topic>Blogs</topic><topic>Colleges & universities</topic><topic>Computer and Information Sciences</topic><topic>Data science</topic><topic>Ecologists</topic><topic>Ecology</topic><topic>Education</topic><topic>Engineering and Technology</topic><topic>Environmental statistics</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Programming languages</topic><topic>Sciences education</topic><topic>Scientific visualization</topic><topic>Skills</topic><topic>Social Sciences</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>Students</topic><topic>Study and teaching</topic><topic>Undergraduate study</topic><topic>Visualization</topic><topic>Websites</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawlor, Jake</creatorcontrib><creatorcontrib>Banville, Francis</creatorcontrib><creatorcontrib>Forero-Muñoz, Norma-Rocio</creatorcontrib><creatorcontrib>Hébert, Katherine</creatorcontrib><creatorcontrib>Martínez-Lanfranco, Juan Andrés</creatorcontrib><creatorcontrib>Rogy, Pierre</creatorcontrib><creatorcontrib>MacDonald, A. Andrew M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawlor, Jake</au><au>Banville, Francis</au><au>Forero-Muñoz, Norma-Rocio</au><au>Hébert, Katherine</au><au>Martínez-Lanfranco, Juan Andrés</au><au>Rogy, Pierre</au><au>MacDonald, A. Andrew M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ten simple rules for teaching yourself R</atitle><jtitle>PLoS computational biology</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010372</spage><epage>e1010372</epage><pages>e1010372-e1010372</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>[...]in a recent survey of science educators, the vast majority of respondents rated data skills (analysis and visualization) as extremely or very important for undergraduate students, but respondents particularly from bachelors-granting institutions also listed “outside of coursework” as the most likely place for students to learn such skills [3]. Importantly, we write this list of strategies and resources not as the voice of authority of the vast and diverse universe of R users, but simply as a group of quantitative-minded mostly ecologists, generally located in universities across Canada, who have all learned R largely without formal instruction. [...]the Quebec Centre for Biodiversity Science (QCBS) R Workshop Series offers introductory and advanced workshops on data visualization, linear models, multivariate analyses, and more, in both English and French, with freely available slides, code, and companion books on their website. The Coding Club from the University of Edinburgh offers a wide breadth of courses for ecologists and environmental scientists, ranging from data manipulation and statistics to geospatial analysis and machine learning.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36048770</pmid><doi>10.1371/journal.pcbi.1010372</doi><tpages>e1010372</tpages><orcidid>https://orcid.org/0000-0002-1692-1168</orcidid><orcidid>https://orcid.org/0000-0002-3002-0059</orcidid><orcidid>https://orcid.org/0000-0001-9051-0597</orcidid><orcidid>https://orcid.org/0000-0002-1499-5227</orcidid><orcidid>https://orcid.org/0000-0001-7866-6775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-09, Vol.18 (9), p.e1010372-e1010372 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2725287405 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | APL Biodiversity Biology and Life Sciences Blogs Colleges & universities Computer and Information Sciences Data science Ecologists Ecology Education Engineering and Technology Environmental statistics Machine learning Methods Multivariate analysis Programming languages Sciences education Scientific visualization Skills Social Sciences Spatial analysis Statistical analysis Students Study and teaching Undergraduate study Visualization Websites Workshops |
title | Ten simple rules for teaching yourself R |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ten%20simple%20rules%20for%20teaching%20yourself%20R&rft.jtitle=PLoS%20computational%20biology&rft.au=Lawlor,%20Jake&rft.date=2022-09-01&rft.volume=18&rft.issue=9&rft.spage=e1010372&rft.epage=e1010372&rft.pages=e1010372-e1010372&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010372&rft_dat=%3Cgale_plos_%3EA720575199%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725287405&rft_id=info:pmid/36048770&rft_galeid=A720575199&rft_doaj_id=oai_doaj_org_article_b11c4e71aa6b4706887f7f496be1ce7e&rfr_iscdi=true |