What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-09, Vol.18 (9), p.e1010412-e1010412 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010412 |
---|---|
container_issue | 9 |
container_start_page | e1010412 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Soler-Toscano, Fernando Galadí, Javier A Escrichs, Anira Sanz Perl, Yonatan López-González, Ane Sitt, Jacobo D Annen, Jitka Gosseries, Olivia Thibaut, Aurore Panda, Rajanikant Esteban, Francisco J Laureys, Steven Kringelbach, Morten L Langa, José A Deco, Gustavo |
description | The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision. |
doi_str_mv | 10.1371/journal.pcbi.1010412 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725284802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575208</galeid><doaj_id>oai_doaj_org_article_b9af8b9441ef49ada4c663659e432a1c</doaj_id><sourcerecordid>A720575208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</originalsourceid><addsrcrecordid>eNqVk8uO0zAUhiMEYoaBN0AiEhtm0eJrHLNAqkbAVKoAcRFLy3GOU4_SuNhOxbw9TlsQHc0GZRHr-Pv_c0lOUTzHaI6pwK9v_BgG3c-3pnFzjDBimDwozjHndCYorx_-cz4rnsR4g1A-yupxcUYrVAlCxHkRf6x1KnsHsRyHFsIAOq3flJ8DGBehNL2O0VlndHJ-KL0tm6DdUMak0ySJbujK5DYwa2EL2WBIZfJb3_sua_rMhdGkMcAkbW8HvXEmPi0eWd1HeHZ8XxTf37_7dnU9W336sLxarGZG4CrNOBYIGQrWSAsNYmA544ZTSxFprWhrqBsGGptaWGuJYQbVWHIBVorKtoxeFC8OvtveR3WcV1REEE5qViOSieWBaL2-UdvgNjrcKq-d2gd86JQOyZkeVCO1rRvJGAbLpG41M1VFKy6BUZKLyF5vj9nGZgOtyaMIuj8xPb0Z3Fp1fqckqzEWIhvQg0H-Gh3k5I1TO7IX7s9jn6sxqgFFSFUrIiXiU5OXB9X6TrLrxUpNMcQY4kLwHc7sq2OJwf8cISa1cdFA3-sB_DhNBiMpEK5kRl_eQe-f35HqdB6RG6zPnZnJVC0EyWk5QXWm5vdQ-Wkh_w5-AOty_ERweSLITIJfqdNjjGr59ct_sB9PWXZgTfAxBrB_B4aRmpbqT5NqWip1XCr6Gz65FDM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725284802</pqid></control><display><type>article</type><title>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Soler-Toscano, Fernando ; Galadí, Javier A ; Escrichs, Anira ; Sanz Perl, Yonatan ; López-González, Ane ; Sitt, Jacobo D ; Annen, Jitka ; Gosseries, Olivia ; Thibaut, Aurore ; Panda, Rajanikant ; Esteban, Francisco J ; Laureys, Steven ; Kringelbach, Morten L ; Langa, José A ; Deco, Gustavo</creator><contributor>Scheinost, Dustin</contributor><creatorcontrib>Soler-Toscano, Fernando ; Galadí, Javier A ; Escrichs, Anira ; Sanz Perl, Yonatan ; López-González, Ane ; Sitt, Jacobo D ; Annen, Jitka ; Gosseries, Olivia ; Thibaut, Aurore ; Panda, Rajanikant ; Esteban, Francisco J ; Laureys, Steven ; Kringelbach, Morten L ; Langa, José A ; Deco, Gustavo ; Scheinost, Dustin</creatorcontrib><description>The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010412</identifier><identifier>PMID: 36067227</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Brain ; Brain cancer ; Brain mapping ; Brain/diagnostic imaging ; Classification ; Cognitive science ; Coma ; Computer and Information Sciences ; Consciousness ; Cooperation ; Dynamical systems ; Functional magnetic resonance imaging ; Humans ; Magnetic Resonance Imaging/methods ; Mathematical statistics ; Medical imaging ; Medicine and Health Sciences ; Metastasis ; Neuroimaging ; Neuroscience ; Neurosciences & behavior ; Neurosciences & comportement ; Persistent Vegetative State ; Physical Sciences ; Research and Analysis Methods ; Sciences sociales & comportementales, psychologie ; Sleep and wakefulness ; Social & behavioral sciences, psychology ; System theory ; Time dependence ; Topology ; Values ; Wakefulness</subject><ispartof>PLoS computational biology, 2022-09, Vol.18 (9), p.e1010412-e1010412</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Soler-Toscano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2022 Soler-Toscano et al 2022 Soler-Toscano et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</citedby><cites>FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</cites><orcidid>0000-0002-3908-6898 ; 0000-0002-7459-4345 ; 0000-0002-1270-5564 ; 0000-0001-9011-7496 ; 0000-0001-9109-0424 ; 0000-0001-5991-1747 ; 0000-0002-0960-4340 ; 0000-0002-8765-0764 ; 0000-0002-6482-9737 ; 0000-0002-8995-7583 ; 0000-0002-7135-2973 ; 0000-0003-1953-4136 ; 0000-0001-9526-4241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481177/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481177/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04405775$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Scheinost, Dustin</contributor><creatorcontrib>Soler-Toscano, Fernando</creatorcontrib><creatorcontrib>Galadí, Javier A</creatorcontrib><creatorcontrib>Escrichs, Anira</creatorcontrib><creatorcontrib>Sanz Perl, Yonatan</creatorcontrib><creatorcontrib>López-González, Ane</creatorcontrib><creatorcontrib>Sitt, Jacobo D</creatorcontrib><creatorcontrib>Annen, Jitka</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Thibaut, Aurore</creatorcontrib><creatorcontrib>Panda, Rajanikant</creatorcontrib><creatorcontrib>Esteban, Francisco J</creatorcontrib><creatorcontrib>Laureys, Steven</creatorcontrib><creatorcontrib>Kringelbach, Morten L</creatorcontrib><creatorcontrib>Langa, José A</creatorcontrib><creatorcontrib>Deco, Gustavo</creatorcontrib><title>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</title><title>PLoS computational biology</title><description>The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain mapping</subject><subject>Brain/diagnostic imaging</subject><subject>Classification</subject><subject>Cognitive science</subject><subject>Coma</subject><subject>Computer and Information Sciences</subject><subject>Consciousness</subject><subject>Cooperation</subject><subject>Dynamical systems</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging/methods</subject><subject>Mathematical statistics</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Metastasis</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Neurosciences & behavior</subject><subject>Neurosciences & comportement</subject><subject>Persistent Vegetative State</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Sciences sociales & comportementales, psychologie</subject><subject>Sleep and wakefulness</subject><subject>Social & behavioral sciences, psychology</subject><subject>System theory</subject><subject>Time dependence</subject><subject>Topology</subject><subject>Values</subject><subject>Wakefulness</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8uO0zAUhiMEYoaBN0AiEhtm0eJrHLNAqkbAVKoAcRFLy3GOU4_SuNhOxbw9TlsQHc0GZRHr-Pv_c0lOUTzHaI6pwK9v_BgG3c-3pnFzjDBimDwozjHndCYorx_-cz4rnsR4g1A-yupxcUYrVAlCxHkRf6x1KnsHsRyHFsIAOq3flJ8DGBehNL2O0VlndHJ-KL0tm6DdUMak0ySJbujK5DYwa2EL2WBIZfJb3_sua_rMhdGkMcAkbW8HvXEmPi0eWd1HeHZ8XxTf37_7dnU9W336sLxarGZG4CrNOBYIGQrWSAsNYmA544ZTSxFprWhrqBsGGptaWGuJYQbVWHIBVorKtoxeFC8OvtveR3WcV1REEE5qViOSieWBaL2-UdvgNjrcKq-d2gd86JQOyZkeVCO1rRvJGAbLpG41M1VFKy6BUZKLyF5vj9nGZgOtyaMIuj8xPb0Z3Fp1fqckqzEWIhvQg0H-Gh3k5I1TO7IX7s9jn6sxqgFFSFUrIiXiU5OXB9X6TrLrxUpNMcQY4kLwHc7sq2OJwf8cISa1cdFA3-sB_DhNBiMpEK5kRl_eQe-f35HqdB6RG6zPnZnJVC0EyWk5QXWm5vdQ-Wkh_w5-AOty_ERweSLITIJfqdNjjGr59ct_sB9PWXZgTfAxBrB_B4aRmpbqT5NqWip1XCr6Gz65FDM</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Soler-Toscano, Fernando</creator><creator>Galadí, Javier A</creator><creator>Escrichs, Anira</creator><creator>Sanz Perl, Yonatan</creator><creator>López-González, Ane</creator><creator>Sitt, Jacobo D</creator><creator>Annen, Jitka</creator><creator>Gosseries, Olivia</creator><creator>Thibaut, Aurore</creator><creator>Panda, Rajanikant</creator><creator>Esteban, Francisco J</creator><creator>Laureys, Steven</creator><creator>Kringelbach, Morten L</creator><creator>Langa, José A</creator><creator>Deco, Gustavo</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3908-6898</orcidid><orcidid>https://orcid.org/0000-0002-7459-4345</orcidid><orcidid>https://orcid.org/0000-0002-1270-5564</orcidid><orcidid>https://orcid.org/0000-0001-9011-7496</orcidid><orcidid>https://orcid.org/0000-0001-9109-0424</orcidid><orcidid>https://orcid.org/0000-0001-5991-1747</orcidid><orcidid>https://orcid.org/0000-0002-0960-4340</orcidid><orcidid>https://orcid.org/0000-0002-8765-0764</orcidid><orcidid>https://orcid.org/0000-0002-6482-9737</orcidid><orcidid>https://orcid.org/0000-0002-8995-7583</orcidid><orcidid>https://orcid.org/0000-0002-7135-2973</orcidid><orcidid>https://orcid.org/0000-0003-1953-4136</orcidid><orcidid>https://orcid.org/0000-0001-9526-4241</orcidid></search><sort><creationdate>20220906</creationdate><title>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</title><author>Soler-Toscano, Fernando ; Galadí, Javier A ; Escrichs, Anira ; Sanz Perl, Yonatan ; López-González, Ane ; Sitt, Jacobo D ; Annen, Jitka ; Gosseries, Olivia ; Thibaut, Aurore ; Panda, Rajanikant ; Esteban, Francisco J ; Laureys, Steven ; Kringelbach, Morten L ; Langa, José A ; Deco, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain mapping</topic><topic>Brain/diagnostic imaging</topic><topic>Classification</topic><topic>Cognitive science</topic><topic>Coma</topic><topic>Computer and Information Sciences</topic><topic>Consciousness</topic><topic>Cooperation</topic><topic>Dynamical systems</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging/methods</topic><topic>Mathematical statistics</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Metastasis</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Neurosciences & behavior</topic><topic>Neurosciences & comportement</topic><topic>Persistent Vegetative State</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Sciences sociales & comportementales, psychologie</topic><topic>Sleep and wakefulness</topic><topic>Social & behavioral sciences, psychology</topic><topic>System theory</topic><topic>Time dependence</topic><topic>Topology</topic><topic>Values</topic><topic>Wakefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soler-Toscano, Fernando</creatorcontrib><creatorcontrib>Galadí, Javier A</creatorcontrib><creatorcontrib>Escrichs, Anira</creatorcontrib><creatorcontrib>Sanz Perl, Yonatan</creatorcontrib><creatorcontrib>López-González, Ane</creatorcontrib><creatorcontrib>Sitt, Jacobo D</creatorcontrib><creatorcontrib>Annen, Jitka</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Thibaut, Aurore</creatorcontrib><creatorcontrib>Panda, Rajanikant</creatorcontrib><creatorcontrib>Esteban, Francisco J</creatorcontrib><creatorcontrib>Laureys, Steven</creatorcontrib><creatorcontrib>Kringelbach, Morten L</creatorcontrib><creatorcontrib>Langa, José A</creatorcontrib><creatorcontrib>Deco, Gustavo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soler-Toscano, Fernando</au><au>Galadí, Javier A</au><au>Escrichs, Anira</au><au>Sanz Perl, Yonatan</au><au>López-González, Ane</au><au>Sitt, Jacobo D</au><au>Annen, Jitka</au><au>Gosseries, Olivia</au><au>Thibaut, Aurore</au><au>Panda, Rajanikant</au><au>Esteban, Francisco J</au><au>Laureys, Steven</au><au>Kringelbach, Morten L</au><au>Langa, José A</au><au>Deco, Gustavo</au><au>Scheinost, Dustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</atitle><jtitle>PLoS computational biology</jtitle><date>2022-09-06</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010412</spage><epage>e1010412</epage><pages>e1010412-e1010412</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36067227</pmid><doi>10.1371/journal.pcbi.1010412</doi><tpages>e1010412</tpages><orcidid>https://orcid.org/0000-0002-3908-6898</orcidid><orcidid>https://orcid.org/0000-0002-7459-4345</orcidid><orcidid>https://orcid.org/0000-0002-1270-5564</orcidid><orcidid>https://orcid.org/0000-0001-9011-7496</orcidid><orcidid>https://orcid.org/0000-0001-9109-0424</orcidid><orcidid>https://orcid.org/0000-0001-5991-1747</orcidid><orcidid>https://orcid.org/0000-0002-0960-4340</orcidid><orcidid>https://orcid.org/0000-0002-8765-0764</orcidid><orcidid>https://orcid.org/0000-0002-6482-9737</orcidid><orcidid>https://orcid.org/0000-0002-8995-7583</orcidid><orcidid>https://orcid.org/0000-0002-7135-2973</orcidid><orcidid>https://orcid.org/0000-0003-1953-4136</orcidid><orcidid>https://orcid.org/0000-0001-9526-4241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-09, Vol.18 (9), p.e1010412-e1010412 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2725284802 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Biology and Life Sciences Brain Brain cancer Brain mapping Brain/diagnostic imaging Classification Cognitive science Coma Computer and Information Sciences Consciousness Cooperation Dynamical systems Functional magnetic resonance imaging Humans Magnetic Resonance Imaging/methods Mathematical statistics Medical imaging Medicine and Health Sciences Metastasis Neuroimaging Neuroscience Neurosciences & behavior Neurosciences & comportement Persistent Vegetative State Physical Sciences Research and Analysis Methods Sciences sociales & comportementales, psychologie Sleep and wakefulness Social & behavioral sciences, psychology System theory Time dependence Topology Values Wakefulness |
title | What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20lies%20underneath:%20Precise%20classification%20of%20brain%20states%20using%20time-dependent%20topological%20structure%20of%20dynamics&rft.jtitle=PLoS%20computational%20biology&rft.au=Soler-Toscano,%20Fernando&rft.date=2022-09-06&rft.volume=18&rft.issue=9&rft.spage=e1010412&rft.epage=e1010412&rft.pages=e1010412-e1010412&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010412&rft_dat=%3Cgale_plos_%3EA720575208%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725284802&rft_id=info:pmid/36067227&rft_galeid=A720575208&rft_doaj_id=oai_doaj_org_article_b9af8b9441ef49ada4c663659e432a1c&rfr_iscdi=true |