What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics

The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-09, Vol.18 (9), p.e1010412-e1010412
Hauptverfasser: Soler-Toscano, Fernando, Galadí, Javier A, Escrichs, Anira, Sanz Perl, Yonatan, López-González, Ane, Sitt, Jacobo D, Annen, Jitka, Gosseries, Olivia, Thibaut, Aurore, Panda, Rajanikant, Esteban, Francisco J, Laureys, Steven, Kringelbach, Morten L, Langa, José A, Deco, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010412
container_issue 9
container_start_page e1010412
container_title PLoS computational biology
container_volume 18
creator Soler-Toscano, Fernando
Galadí, Javier A
Escrichs, Anira
Sanz Perl, Yonatan
López-González, Ane
Sitt, Jacobo D
Annen, Jitka
Gosseries, Olivia
Thibaut, Aurore
Panda, Rajanikant
Esteban, Francisco J
Laureys, Steven
Kringelbach, Morten L
Langa, José A
Deco, Gustavo
description The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.
doi_str_mv 10.1371/journal.pcbi.1010412
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725284802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575208</galeid><doaj_id>oai_doaj_org_article_b9af8b9441ef49ada4c663659e432a1c</doaj_id><sourcerecordid>A720575208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</originalsourceid><addsrcrecordid>eNqVk8uO0zAUhiMEYoaBN0AiEhtm0eJrHLNAqkbAVKoAcRFLy3GOU4_SuNhOxbw9TlsQHc0GZRHr-Pv_c0lOUTzHaI6pwK9v_BgG3c-3pnFzjDBimDwozjHndCYorx_-cz4rnsR4g1A-yupxcUYrVAlCxHkRf6x1KnsHsRyHFsIAOq3flJ8DGBehNL2O0VlndHJ-KL0tm6DdUMak0ySJbujK5DYwa2EL2WBIZfJb3_sua_rMhdGkMcAkbW8HvXEmPi0eWd1HeHZ8XxTf37_7dnU9W336sLxarGZG4CrNOBYIGQrWSAsNYmA544ZTSxFprWhrqBsGGptaWGuJYQbVWHIBVorKtoxeFC8OvtveR3WcV1REEE5qViOSieWBaL2-UdvgNjrcKq-d2gd86JQOyZkeVCO1rRvJGAbLpG41M1VFKy6BUZKLyF5vj9nGZgOtyaMIuj8xPb0Z3Fp1fqckqzEWIhvQg0H-Gh3k5I1TO7IX7s9jn6sxqgFFSFUrIiXiU5OXB9X6TrLrxUpNMcQY4kLwHc7sq2OJwf8cISa1cdFA3-sB_DhNBiMpEK5kRl_eQe-f35HqdB6RG6zPnZnJVC0EyWk5QXWm5vdQ-Wkh_w5-AOty_ERweSLITIJfqdNjjGr59ct_sB9PWXZgTfAxBrB_B4aRmpbqT5NqWip1XCr6Gz65FDM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725284802</pqid></control><display><type>article</type><title>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Soler-Toscano, Fernando ; Galadí, Javier A ; Escrichs, Anira ; Sanz Perl, Yonatan ; López-González, Ane ; Sitt, Jacobo D ; Annen, Jitka ; Gosseries, Olivia ; Thibaut, Aurore ; Panda, Rajanikant ; Esteban, Francisco J ; Laureys, Steven ; Kringelbach, Morten L ; Langa, José A ; Deco, Gustavo</creator><contributor>Scheinost, Dustin</contributor><creatorcontrib>Soler-Toscano, Fernando ; Galadí, Javier A ; Escrichs, Anira ; Sanz Perl, Yonatan ; López-González, Ane ; Sitt, Jacobo D ; Annen, Jitka ; Gosseries, Olivia ; Thibaut, Aurore ; Panda, Rajanikant ; Esteban, Francisco J ; Laureys, Steven ; Kringelbach, Morten L ; Langa, José A ; Deco, Gustavo ; Scheinost, Dustin</creatorcontrib><description>The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010412</identifier><identifier>PMID: 36067227</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Brain ; Brain cancer ; Brain mapping ; Brain/diagnostic imaging ; Classification ; Cognitive science ; Coma ; Computer and Information Sciences ; Consciousness ; Cooperation ; Dynamical systems ; Functional magnetic resonance imaging ; Humans ; Magnetic Resonance Imaging/methods ; Mathematical statistics ; Medical imaging ; Medicine and Health Sciences ; Metastasis ; Neuroimaging ; Neuroscience ; Neurosciences &amp; behavior ; Neurosciences &amp; comportement ; Persistent Vegetative State ; Physical Sciences ; Research and Analysis Methods ; Sciences sociales &amp; comportementales, psychologie ; Sleep and wakefulness ; Social &amp; behavioral sciences, psychology ; System theory ; Time dependence ; Topology ; Values ; Wakefulness</subject><ispartof>PLoS computational biology, 2022-09, Vol.18 (9), p.e1010412-e1010412</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Soler-Toscano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2022 Soler-Toscano et al 2022 Soler-Toscano et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</citedby><cites>FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</cites><orcidid>0000-0002-3908-6898 ; 0000-0002-7459-4345 ; 0000-0002-1270-5564 ; 0000-0001-9011-7496 ; 0000-0001-9109-0424 ; 0000-0001-5991-1747 ; 0000-0002-0960-4340 ; 0000-0002-8765-0764 ; 0000-0002-6482-9737 ; 0000-0002-8995-7583 ; 0000-0002-7135-2973 ; 0000-0003-1953-4136 ; 0000-0001-9526-4241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481177/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481177/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04405775$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Scheinost, Dustin</contributor><creatorcontrib>Soler-Toscano, Fernando</creatorcontrib><creatorcontrib>Galadí, Javier A</creatorcontrib><creatorcontrib>Escrichs, Anira</creatorcontrib><creatorcontrib>Sanz Perl, Yonatan</creatorcontrib><creatorcontrib>López-González, Ane</creatorcontrib><creatorcontrib>Sitt, Jacobo D</creatorcontrib><creatorcontrib>Annen, Jitka</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Thibaut, Aurore</creatorcontrib><creatorcontrib>Panda, Rajanikant</creatorcontrib><creatorcontrib>Esteban, Francisco J</creatorcontrib><creatorcontrib>Laureys, Steven</creatorcontrib><creatorcontrib>Kringelbach, Morten L</creatorcontrib><creatorcontrib>Langa, José A</creatorcontrib><creatorcontrib>Deco, Gustavo</creatorcontrib><title>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</title><title>PLoS computational biology</title><description>The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain mapping</subject><subject>Brain/diagnostic imaging</subject><subject>Classification</subject><subject>Cognitive science</subject><subject>Coma</subject><subject>Computer and Information Sciences</subject><subject>Consciousness</subject><subject>Cooperation</subject><subject>Dynamical systems</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging/methods</subject><subject>Mathematical statistics</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Metastasis</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Neurosciences &amp; behavior</subject><subject>Neurosciences &amp; comportement</subject><subject>Persistent Vegetative State</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Sciences sociales &amp; comportementales, psychologie</subject><subject>Sleep and wakefulness</subject><subject>Social &amp; behavioral sciences, psychology</subject><subject>System theory</subject><subject>Time dependence</subject><subject>Topology</subject><subject>Values</subject><subject>Wakefulness</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8uO0zAUhiMEYoaBN0AiEhtm0eJrHLNAqkbAVKoAcRFLy3GOU4_SuNhOxbw9TlsQHc0GZRHr-Pv_c0lOUTzHaI6pwK9v_BgG3c-3pnFzjDBimDwozjHndCYorx_-cz4rnsR4g1A-yupxcUYrVAlCxHkRf6x1KnsHsRyHFsIAOq3flJ8DGBehNL2O0VlndHJ-KL0tm6DdUMak0ySJbujK5DYwa2EL2WBIZfJb3_sua_rMhdGkMcAkbW8HvXEmPi0eWd1HeHZ8XxTf37_7dnU9W336sLxarGZG4CrNOBYIGQrWSAsNYmA544ZTSxFprWhrqBsGGptaWGuJYQbVWHIBVorKtoxeFC8OvtveR3WcV1REEE5qViOSieWBaL2-UdvgNjrcKq-d2gd86JQOyZkeVCO1rRvJGAbLpG41M1VFKy6BUZKLyF5vj9nGZgOtyaMIuj8xPb0Z3Fp1fqckqzEWIhvQg0H-Gh3k5I1TO7IX7s9jn6sxqgFFSFUrIiXiU5OXB9X6TrLrxUpNMcQY4kLwHc7sq2OJwf8cISa1cdFA3-sB_DhNBiMpEK5kRl_eQe-f35HqdB6RG6zPnZnJVC0EyWk5QXWm5vdQ-Wkh_w5-AOty_ERweSLITIJfqdNjjGr59ct_sB9PWXZgTfAxBrB_B4aRmpbqT5NqWip1XCr6Gz65FDM</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Soler-Toscano, Fernando</creator><creator>Galadí, Javier A</creator><creator>Escrichs, Anira</creator><creator>Sanz Perl, Yonatan</creator><creator>López-González, Ane</creator><creator>Sitt, Jacobo D</creator><creator>Annen, Jitka</creator><creator>Gosseries, Olivia</creator><creator>Thibaut, Aurore</creator><creator>Panda, Rajanikant</creator><creator>Esteban, Francisco J</creator><creator>Laureys, Steven</creator><creator>Kringelbach, Morten L</creator><creator>Langa, José A</creator><creator>Deco, Gustavo</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3908-6898</orcidid><orcidid>https://orcid.org/0000-0002-7459-4345</orcidid><orcidid>https://orcid.org/0000-0002-1270-5564</orcidid><orcidid>https://orcid.org/0000-0001-9011-7496</orcidid><orcidid>https://orcid.org/0000-0001-9109-0424</orcidid><orcidid>https://orcid.org/0000-0001-5991-1747</orcidid><orcidid>https://orcid.org/0000-0002-0960-4340</orcidid><orcidid>https://orcid.org/0000-0002-8765-0764</orcidid><orcidid>https://orcid.org/0000-0002-6482-9737</orcidid><orcidid>https://orcid.org/0000-0002-8995-7583</orcidid><orcidid>https://orcid.org/0000-0002-7135-2973</orcidid><orcidid>https://orcid.org/0000-0003-1953-4136</orcidid><orcidid>https://orcid.org/0000-0001-9526-4241</orcidid></search><sort><creationdate>20220906</creationdate><title>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</title><author>Soler-Toscano, Fernando ; Galadí, Javier A ; Escrichs, Anira ; Sanz Perl, Yonatan ; López-González, Ane ; Sitt, Jacobo D ; Annen, Jitka ; Gosseries, Olivia ; Thibaut, Aurore ; Panda, Rajanikant ; Esteban, Francisco J ; Laureys, Steven ; Kringelbach, Morten L ; Langa, José A ; Deco, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c716t-51700c3efc9feb04ef545c53f302df7d8e8b4ea1c87fff2c4c081957ef976fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain mapping</topic><topic>Brain/diagnostic imaging</topic><topic>Classification</topic><topic>Cognitive science</topic><topic>Coma</topic><topic>Computer and Information Sciences</topic><topic>Consciousness</topic><topic>Cooperation</topic><topic>Dynamical systems</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging/methods</topic><topic>Mathematical statistics</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Metastasis</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Neurosciences &amp; behavior</topic><topic>Neurosciences &amp; comportement</topic><topic>Persistent Vegetative State</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Sciences sociales &amp; comportementales, psychologie</topic><topic>Sleep and wakefulness</topic><topic>Social &amp; behavioral sciences, psychology</topic><topic>System theory</topic><topic>Time dependence</topic><topic>Topology</topic><topic>Values</topic><topic>Wakefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soler-Toscano, Fernando</creatorcontrib><creatorcontrib>Galadí, Javier A</creatorcontrib><creatorcontrib>Escrichs, Anira</creatorcontrib><creatorcontrib>Sanz Perl, Yonatan</creatorcontrib><creatorcontrib>López-González, Ane</creatorcontrib><creatorcontrib>Sitt, Jacobo D</creatorcontrib><creatorcontrib>Annen, Jitka</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Thibaut, Aurore</creatorcontrib><creatorcontrib>Panda, Rajanikant</creatorcontrib><creatorcontrib>Esteban, Francisco J</creatorcontrib><creatorcontrib>Laureys, Steven</creatorcontrib><creatorcontrib>Kringelbach, Morten L</creatorcontrib><creatorcontrib>Langa, José A</creatorcontrib><creatorcontrib>Deco, Gustavo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soler-Toscano, Fernando</au><au>Galadí, Javier A</au><au>Escrichs, Anira</au><au>Sanz Perl, Yonatan</au><au>López-González, Ane</au><au>Sitt, Jacobo D</au><au>Annen, Jitka</au><au>Gosseries, Olivia</au><au>Thibaut, Aurore</au><au>Panda, Rajanikant</au><au>Esteban, Francisco J</au><au>Laureys, Steven</au><au>Kringelbach, Morten L</au><au>Langa, José A</au><au>Deco, Gustavo</au><au>Scheinost, Dustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics</atitle><jtitle>PLoS computational biology</jtitle><date>2022-09-06</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010412</spage><epage>e1010412</epage><pages>e1010412-e1010412</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36067227</pmid><doi>10.1371/journal.pcbi.1010412</doi><tpages>e1010412</tpages><orcidid>https://orcid.org/0000-0002-3908-6898</orcidid><orcidid>https://orcid.org/0000-0002-7459-4345</orcidid><orcidid>https://orcid.org/0000-0002-1270-5564</orcidid><orcidid>https://orcid.org/0000-0001-9011-7496</orcidid><orcidid>https://orcid.org/0000-0001-9109-0424</orcidid><orcidid>https://orcid.org/0000-0001-5991-1747</orcidid><orcidid>https://orcid.org/0000-0002-0960-4340</orcidid><orcidid>https://orcid.org/0000-0002-8765-0764</orcidid><orcidid>https://orcid.org/0000-0002-6482-9737</orcidid><orcidid>https://orcid.org/0000-0002-8995-7583</orcidid><orcidid>https://orcid.org/0000-0002-7135-2973</orcidid><orcidid>https://orcid.org/0000-0003-1953-4136</orcidid><orcidid>https://orcid.org/0000-0001-9526-4241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-09, Vol.18 (9), p.e1010412-e1010412
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2725284802
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Biology and Life Sciences
Brain
Brain cancer
Brain mapping
Brain/diagnostic imaging
Classification
Cognitive science
Coma
Computer and Information Sciences
Consciousness
Cooperation
Dynamical systems
Functional magnetic resonance imaging
Humans
Magnetic Resonance Imaging/methods
Mathematical statistics
Medical imaging
Medicine and Health Sciences
Metastasis
Neuroimaging
Neuroscience
Neurosciences & behavior
Neurosciences & comportement
Persistent Vegetative State
Physical Sciences
Research and Analysis Methods
Sciences sociales & comportementales, psychologie
Sleep and wakefulness
Social & behavioral sciences, psychology
System theory
Time dependence
Topology
Values
Wakefulness
title What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20lies%20underneath:%20Precise%20classification%20of%20brain%20states%20using%20time-dependent%20topological%20structure%20of%20dynamics&rft.jtitle=PLoS%20computational%20biology&rft.au=Soler-Toscano,%20Fernando&rft.date=2022-09-06&rft.volume=18&rft.issue=9&rft.spage=e1010412&rft.epage=e1010412&rft.pages=e1010412-e1010412&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010412&rft_dat=%3Cgale_plos_%3EA720575208%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725284802&rft_id=info:pmid/36067227&rft_galeid=A720575208&rft_doaj_id=oai_doaj_org_article_b9af8b9441ef49ada4c663659e432a1c&rfr_iscdi=true