Robust inference of population size histories from genomic sequencing data
Unraveling the complex demographic histories of natural populations is a central problem in population genetics. Understanding past demographic events is of general anthropological interest, but is also an important step in establishing accurate null models when identifying adaptive or disease-assoc...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-09, Vol.18 (9), p.e1010419-e1010419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010419 |
---|---|
container_issue | 9 |
container_start_page | e1010419 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Upadhya, Gautam Steinrücken, Matthias |
description | Unraveling the complex demographic histories of natural populations is a central problem in population genetics. Understanding past demographic events is of general anthropological interest, but is also an important step in establishing accurate null models when identifying adaptive or disease-associated genetic variation. An important class of tools for inferring past population size changes from genomic sequence data are Coalescent Hidden Markov Models (CHMMs). These models make efficient use of the linkage information in population genomic datasets by using the local genealogies relating sampled individuals as latent states that evolve along the chromosome in an HMM framework. Extending these models to large sample sizes is challenging, since the number of possible latent states increases rapidly. Here, we present our method CHIMP (CHMM History-Inference Maximum-Likelihood Procedure), a novel CHMM method for inferring the size history of a population. It can be applied to large samples (hundreds of haplotypes) and only requires unphased genomes as input. The two implementations of CHIMP that we present here use either the height of the genealogical tree (TMRCA) or the total branch length, respectively, as the latent variable at each position in the genome. The requisite transition and emission probabilities are obtained by numerically solving certain systems of differential equations derived from the ancestral process with recombination. The parameters of the population size history are subsequently inferred using an Expectation-Maximization algorithm. In addition, we implement a composite likelihood scheme to allow the method to scale to large sample sizes. We demonstrate the efficiency and accuracy of our method in a variety of benchmark tests using simulated data and present comparisons to other state-of-the-art methods. Specifically, our implementation using TMRCA as the latent variable shows comparable performance and provides accurate estimates of effective population sizes in intermediate and ancient times. Our method is agnostic to the phasing of the data, which makes it a promising alternative in scenarios where high quality data is not available, and has potential applications for pseudo-haploid data. |
doi_str_mv | 10.1371/journal.pcbi.1010419 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725283300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720576255</galeid><doaj_id>oai_doaj_org_article_e4d7ce38aa664bdfad4c37b027f6d151</doaj_id><sourcerecordid>A720576255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-e4d5a7116a418e724bb757175b01df51be68af07ac438365128d6581203ca3693</originalsourceid><addsrcrecordid>eNqVUk2P0zAQtRCIXQr_AEEkLnBo8dixnV6QVis-ilYgLXC2Js4k6yqNu3aCgF-PS7urLeKCfLA1fvNm5s1j7CnwBUgDr9dhigP2i62r_QI48BKW99gpKCXnRqrq_p33CXuU0prz_Fzqh-xEagBhQJ2yj5ehntJY-KGlSIOjIrTFNmynHkcfhiL5X1Rc-TSG6CkVbQyboqMhbLwrEl1POcUPXdHgiI_Zgxb7RE8O94x9e_f26_mH-cXn96vzs4u501KOcyobhQZAYwkVGVHWtVEGjKo5NK2CmnSFLTfoSllJrUBUjVYVCC4dSr2UM_Z8z7vtQ7IHGZIVRihRSZmnnLHVHtEEXNtt9BuMP21Ab_8EQuwsxtG7nmzuxjiSFaLWZd202JROmpoL0-oGFGSuN4dqU72hxtEwRuyPSI9_Bn9lu_DdLhVUS6EzwcsDQQxZrzTajU-O-h4HCtOub1BlCbra1XrxF_Tf0y32qA7zAHlxIdd1-TSUtxIGan2OnxnBldEiW2DGXh0lZMxIP8YOp5Ts6svlf2A_HWPLPdbFkFKk9lYV4Hbn0Zv27c6j9uDRnPbsrqK3STemlL8BmSXiYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725283300</pqid></control><display><type>article</type><title>Robust inference of population size histories from genomic sequencing data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Upadhya, Gautam ; Steinrücken, Matthias</creator><contributor>Schiffels, Stephan</contributor><creatorcontrib>Upadhya, Gautam ; Steinrücken, Matthias ; Schiffels, Stephan</creatorcontrib><description>Unraveling the complex demographic histories of natural populations is a central problem in population genetics. Understanding past demographic events is of general anthropological interest, but is also an important step in establishing accurate null models when identifying adaptive or disease-associated genetic variation. An important class of tools for inferring past population size changes from genomic sequence data are Coalescent Hidden Markov Models (CHMMs). These models make efficient use of the linkage information in population genomic datasets by using the local genealogies relating sampled individuals as latent states that evolve along the chromosome in an HMM framework. Extending these models to large sample sizes is challenging, since the number of possible latent states increases rapidly. Here, we present our method CHIMP (CHMM History-Inference Maximum-Likelihood Procedure), a novel CHMM method for inferring the size history of a population. It can be applied to large samples (hundreds of haplotypes) and only requires unphased genomes as input. The two implementations of CHIMP that we present here use either the height of the genealogical tree (TMRCA) or the total branch length, respectively, as the latent variable at each position in the genome. The requisite transition and emission probabilities are obtained by numerically solving certain systems of differential equations derived from the ancestral process with recombination. The parameters of the population size history are subsequently inferred using an Expectation-Maximization algorithm. In addition, we implement a composite likelihood scheme to allow the method to scale to large sample sizes. We demonstrate the efficiency and accuracy of our method in a variety of benchmark tests using simulated data and present comparisons to other state-of-the-art methods. Specifically, our implementation using TMRCA as the latent variable shows comparable performance and provides accurate estimates of effective population sizes in intermediate and ancient times. Our method is agnostic to the phasing of the data, which makes it a promising alternative in scenarios where high quality data is not available, and has potential applications for pseudo-haploid data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010419</identifier><identifier>PMID: 36112715</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Chromosomes ; Computer and Information Sciences ; Computer Simulation ; Demographics ; Demography ; Differential equations ; DNA sequencing ; Genetic diversity ; Genetics ; Genetics, Population ; Genomes ; Genomics ; Haplotypes ; Humans ; Inference ; Markov Chains ; Markov processes ; Methods ; Models, Genetic ; Mutation ; Natural populations ; Nucleotide sequencing ; Physical sciences ; Population ; Population Density ; Population genetics ; Population number ; Process parameters ; Recombination ; Research and Analysis Methods ; Robustness (mathematics) ; Sample size</subject><ispartof>PLoS computational biology, 2022-09, Vol.18 (9), p.e1010419-e1010419</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Upadhya, Steinrücken. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Upadhya, Steinrücken 2022 Upadhya, Steinrücken</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-e4d5a7116a418e724bb757175b01df51be68af07ac438365128d6581203ca3693</citedby><cites>FETCH-LOGICAL-c633t-e4d5a7116a418e724bb757175b01df51be68af07ac438365128d6581203ca3693</cites><orcidid>0000-0003-2318-4407 ; 0000-0001-6331-7900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518926/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9518926/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36112715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schiffels, Stephan</contributor><creatorcontrib>Upadhya, Gautam</creatorcontrib><creatorcontrib>Steinrücken, Matthias</creatorcontrib><title>Robust inference of population size histories from genomic sequencing data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Unraveling the complex demographic histories of natural populations is a central problem in population genetics. Understanding past demographic events is of general anthropological interest, but is also an important step in establishing accurate null models when identifying adaptive or disease-associated genetic variation. An important class of tools for inferring past population size changes from genomic sequence data are Coalescent Hidden Markov Models (CHMMs). These models make efficient use of the linkage information in population genomic datasets by using the local genealogies relating sampled individuals as latent states that evolve along the chromosome in an HMM framework. Extending these models to large sample sizes is challenging, since the number of possible latent states increases rapidly. Here, we present our method CHIMP (CHMM History-Inference Maximum-Likelihood Procedure), a novel CHMM method for inferring the size history of a population. It can be applied to large samples (hundreds of haplotypes) and only requires unphased genomes as input. The two implementations of CHIMP that we present here use either the height of the genealogical tree (TMRCA) or the total branch length, respectively, as the latent variable at each position in the genome. The requisite transition and emission probabilities are obtained by numerically solving certain systems of differential equations derived from the ancestral process with recombination. The parameters of the population size history are subsequently inferred using an Expectation-Maximization algorithm. In addition, we implement a composite likelihood scheme to allow the method to scale to large sample sizes. We demonstrate the efficiency and accuracy of our method in a variety of benchmark tests using simulated data and present comparisons to other state-of-the-art methods. Specifically, our implementation using TMRCA as the latent variable shows comparable performance and provides accurate estimates of effective population sizes in intermediate and ancient times. Our method is agnostic to the phasing of the data, which makes it a promising alternative in scenarios where high quality data is not available, and has potential applications for pseudo-haploid data.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Chromosomes</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Demographics</subject><subject>Demography</subject><subject>Differential equations</subject><subject>DNA sequencing</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Inference</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Natural populations</subject><subject>Nucleotide sequencing</subject><subject>Physical sciences</subject><subject>Population</subject><subject>Population Density</subject><subject>Population genetics</subject><subject>Population number</subject><subject>Process parameters</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Sample size</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk2P0zAQtRCIXQr_AEEkLnBo8dixnV6QVis-ilYgLXC2Js4k6yqNu3aCgF-PS7urLeKCfLA1fvNm5s1j7CnwBUgDr9dhigP2i62r_QI48BKW99gpKCXnRqrq_p33CXuU0prz_Fzqh-xEagBhQJ2yj5ehntJY-KGlSIOjIrTFNmynHkcfhiL5X1Rc-TSG6CkVbQyboqMhbLwrEl1POcUPXdHgiI_Zgxb7RE8O94x9e_f26_mH-cXn96vzs4u501KOcyobhQZAYwkVGVHWtVEGjKo5NK2CmnSFLTfoSllJrUBUjVYVCC4dSr2UM_Z8z7vtQ7IHGZIVRihRSZmnnLHVHtEEXNtt9BuMP21Ab_8EQuwsxtG7nmzuxjiSFaLWZd202JROmpoL0-oGFGSuN4dqU72hxtEwRuyPSI9_Bn9lu_DdLhVUS6EzwcsDQQxZrzTajU-O-h4HCtOub1BlCbra1XrxF_Tf0y32qA7zAHlxIdd1-TSUtxIGan2OnxnBldEiW2DGXh0lZMxIP8YOp5Ts6svlf2A_HWPLPdbFkFKk9lYV4Hbn0Zv27c6j9uDRnPbsrqK3STemlL8BmSXiYA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Upadhya, Gautam</creator><creator>Steinrücken, Matthias</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2318-4407</orcidid><orcidid>https://orcid.org/0000-0001-6331-7900</orcidid></search><sort><creationdate>20220901</creationdate><title>Robust inference of population size histories from genomic sequencing data</title><author>Upadhya, Gautam ; Steinrücken, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-e4d5a7116a418e724bb757175b01df51be68af07ac438365128d6581203ca3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Chromosomes</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Demographics</topic><topic>Demography</topic><topic>Differential equations</topic><topic>DNA sequencing</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Inference</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Natural populations</topic><topic>Nucleotide sequencing</topic><topic>Physical sciences</topic><topic>Population</topic><topic>Population Density</topic><topic>Population genetics</topic><topic>Population number</topic><topic>Process parameters</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Sample size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Upadhya, Gautam</creatorcontrib><creatorcontrib>Steinrücken, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Upadhya, Gautam</au><au>Steinrücken, Matthias</au><au>Schiffels, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust inference of population size histories from genomic sequencing data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010419</spage><epage>e1010419</epage><pages>e1010419-e1010419</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Unraveling the complex demographic histories of natural populations is a central problem in population genetics. Understanding past demographic events is of general anthropological interest, but is also an important step in establishing accurate null models when identifying adaptive or disease-associated genetic variation. An important class of tools for inferring past population size changes from genomic sequence data are Coalescent Hidden Markov Models (CHMMs). These models make efficient use of the linkage information in population genomic datasets by using the local genealogies relating sampled individuals as latent states that evolve along the chromosome in an HMM framework. Extending these models to large sample sizes is challenging, since the number of possible latent states increases rapidly. Here, we present our method CHIMP (CHMM History-Inference Maximum-Likelihood Procedure), a novel CHMM method for inferring the size history of a population. It can be applied to large samples (hundreds of haplotypes) and only requires unphased genomes as input. The two implementations of CHIMP that we present here use either the height of the genealogical tree (TMRCA) or the total branch length, respectively, as the latent variable at each position in the genome. The requisite transition and emission probabilities are obtained by numerically solving certain systems of differential equations derived from the ancestral process with recombination. The parameters of the population size history are subsequently inferred using an Expectation-Maximization algorithm. In addition, we implement a composite likelihood scheme to allow the method to scale to large sample sizes. We demonstrate the efficiency and accuracy of our method in a variety of benchmark tests using simulated data and present comparisons to other state-of-the-art methods. Specifically, our implementation using TMRCA as the latent variable shows comparable performance and provides accurate estimates of effective population sizes in intermediate and ancient times. Our method is agnostic to the phasing of the data, which makes it a promising alternative in scenarios where high quality data is not available, and has potential applications for pseudo-haploid data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36112715</pmid><doi>10.1371/journal.pcbi.1010419</doi><tpages>e1010419</tpages><orcidid>https://orcid.org/0000-0003-2318-4407</orcidid><orcidid>https://orcid.org/0000-0001-6331-7900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-09, Vol.18 (9), p.e1010419-e1010419 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2725283300 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Biology and Life Sciences Chromosomes Computer and Information Sciences Computer Simulation Demographics Demography Differential equations DNA sequencing Genetic diversity Genetics Genetics, Population Genomes Genomics Haplotypes Humans Inference Markov Chains Markov processes Methods Models, Genetic Mutation Natural populations Nucleotide sequencing Physical sciences Population Population Density Population genetics Population number Process parameters Recombination Research and Analysis Methods Robustness (mathematics) Sample size |
title | Robust inference of population size histories from genomic sequencing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20inference%20of%20population%20size%20histories%20from%20genomic%20sequencing%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Upadhya,%20Gautam&rft.date=2022-09-01&rft.volume=18&rft.issue=9&rft.spage=e1010419&rft.epage=e1010419&rft.pages=e1010419-e1010419&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010419&rft_dat=%3Cgale_plos_%3EA720576255%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725283300&rft_id=info:pmid/36112715&rft_galeid=A720576255&rft_doaj_id=oai_doaj_org_article_e4d7ce38aa664bdfad4c37b027f6d151&rfr_iscdi=true |