Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii
Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucl...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2022-09, Vol.18 (9), p.e1010864-e1010864 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010864 |
---|---|
container_issue | 9 |
container_start_page | e1010864 |
container_title | PLoS pathogens |
container_volume | 18 |
creator | Xia, Ningbo Guo, Xuefang Guo, Qinghong Gupta, Nishith Ji, Nuo Shen, Bang Xiao, Lihua Feng, Yaoyu |
description | Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets. |
doi_str_mv | 10.1371/journal.ppat.1010864 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725275163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575254</galeid><doaj_id>oai_doaj_org_article_5544a37fc2cf46a8a3201ab6b396cc71</doaj_id><sourcerecordid>A720575254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwD5CIxKUcdvG3kwtSVfFRqYAE5WxNHCfrldcOsdNu-fV4u6FiUS_Ikseaeea1ZzxF8RKjJaYSv12HafTglsMAaYkRRpVgj4pjzDldSCrZ47_OR8WzGNcIMUyxeFocUYEJriQ6Lm4-mwRNcFaXnTNb21hnkzWxBN-W15PzZoR7n_VlWplyMD6FmO0qxGEFKZ8grW7gtgzdHfArBB9Sltz5Q298eRW2YXAQN1D2wbfWPi-edOCieTHbk-LHh_dX558Wl18_XpyfXS60oFVaiA7phkvDalrxVjBTtYQC5rXGXStqghtdE8J4S0DnEKm4REyzvENtDDf0pHi11x1ciGruWVREEk4kx4Jm4mJPtAHWahjtBsZbFcCqO0cYewVjLsYZxTljQGWnie6YgAooQRga0dBaaC1x1no33zY1G9Pq3KgR3IHoYcTblerDtap5_g8mssDpLDCGn5OJSW1s1MY58CZMu3djLmvEUJXR1_-gD1c3Uz3kAqzvQr5X70TVmSSIS044y9TyASqv1mysDt50NvsPEt4cJGQmmW3qYYpRXXz_9h_sl0OW7Vk9hhhH0933DiO1G_s_Rard2Kt57OlvzGj1qQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725275163</pqid></control><display><type>article</type><title>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Xia, Ningbo ; Guo, Xuefang ; Guo, Qinghong ; Gupta, Nishith ; Ji, Nuo ; Shen, Bang ; Xiao, Lihua ; Feng, Yaoyu</creator><contributor>Soldati-Favre, Dominique</contributor><creatorcontrib>Xia, Ningbo ; Guo, Xuefang ; Guo, Qinghong ; Gupta, Nishith ; Ji, Nuo ; Shen, Bang ; Xiao, Lihua ; Feng, Yaoyu ; Soldati-Favre, Dominique</creatorcontrib><description>Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010864</identifier><identifier>PMID: 36121870</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adenine ; Analysis ; Antiparasitic agents ; Biology and Life Sciences ; Carbon ; CRISPR ; Cytoplasm ; Dehydrogenases ; Depletion ; Enzymes ; Epimerase ; Experiments ; Genes ; Genomes ; Glucose ; Growth ; Intracellular ; Localization ; Medicine and Health Sciences ; Metabolic pathways ; Metabolism ; Metabolites ; NADPH-diaphorase ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nucleotides ; Oxidative stress ; Parasites ; Pathogens ; Pentose ; Pentose phosphate pathway ; Phosphates ; Physical Sciences ; Physiological aspects ; Physiology ; Proteins ; Research and Analysis Methods ; Ribose ; Toxoplasma ; Toxoplasma gondii ; Transaldolase ; Virulence ; Virulence (Microbiology) ; Zoonoses</subject><ispartof>PLoS pathogens, 2022-09, Vol.18 (9), p.e1010864-e1010864</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Xia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Xia et al 2022 Xia et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</citedby><cites>FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</cites><orcidid>0000-0002-8380-1246 ; 0000-0001-8532-2727 ; 0000-0003-0103-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521846/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521846/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Soldati-Favre, Dominique</contributor><creatorcontrib>Xia, Ningbo</creatorcontrib><creatorcontrib>Guo, Xuefang</creatorcontrib><creatorcontrib>Guo, Qinghong</creatorcontrib><creatorcontrib>Gupta, Nishith</creatorcontrib><creatorcontrib>Ji, Nuo</creatorcontrib><creatorcontrib>Shen, Bang</creatorcontrib><creatorcontrib>Xiao, Lihua</creatorcontrib><creatorcontrib>Feng, Yaoyu</creatorcontrib><title>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</title><title>PLoS pathogens</title><description>Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.</description><subject>Adenine</subject><subject>Analysis</subject><subject>Antiparasitic agents</subject><subject>Biology and Life Sciences</subject><subject>Carbon</subject><subject>CRISPR</subject><subject>Cytoplasm</subject><subject>Dehydrogenases</subject><subject>Depletion</subject><subject>Enzymes</subject><subject>Epimerase</subject><subject>Experiments</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Growth</subject><subject>Intracellular</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>NADPH-diaphorase</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nucleotides</subject><subject>Oxidative stress</subject><subject>Parasites</subject><subject>Pathogens</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Phosphates</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribose</subject><subject>Toxoplasma</subject><subject>Toxoplasma gondii</subject><subject>Transaldolase</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Zoonoses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwD5CIxKUcdvG3kwtSVfFRqYAE5WxNHCfrldcOsdNu-fV4u6FiUS_Ikseaeea1ZzxF8RKjJaYSv12HafTglsMAaYkRRpVgj4pjzDldSCrZ47_OR8WzGNcIMUyxeFocUYEJriQ6Lm4-mwRNcFaXnTNb21hnkzWxBN-W15PzZoR7n_VlWplyMD6FmO0qxGEFKZ8grW7gtgzdHfArBB9Sltz5Q298eRW2YXAQN1D2wbfWPi-edOCieTHbk-LHh_dX558Wl18_XpyfXS60oFVaiA7phkvDalrxVjBTtYQC5rXGXStqghtdE8J4S0DnEKm4REyzvENtDDf0pHi11x1ciGruWVREEk4kx4Jm4mJPtAHWahjtBsZbFcCqO0cYewVjLsYZxTljQGWnie6YgAooQRga0dBaaC1x1no33zY1G9Pq3KgR3IHoYcTblerDtap5_g8mssDpLDCGn5OJSW1s1MY58CZMu3djLmvEUJXR1_-gD1c3Uz3kAqzvQr5X70TVmSSIS044y9TyASqv1mysDt50NvsPEt4cJGQmmW3qYYpRXXz_9h_sl0OW7Vk9hhhH0933DiO1G_s_Rard2Kt57OlvzGj1qQ</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Xia, Ningbo</creator><creator>Guo, Xuefang</creator><creator>Guo, Qinghong</creator><creator>Gupta, Nishith</creator><creator>Ji, Nuo</creator><creator>Shen, Bang</creator><creator>Xiao, Lihua</creator><creator>Feng, Yaoyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8380-1246</orcidid><orcidid>https://orcid.org/0000-0001-8532-2727</orcidid><orcidid>https://orcid.org/0000-0003-0103-271X</orcidid></search><sort><creationdate>20220919</creationdate><title>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</title><author>Xia, Ningbo ; Guo, Xuefang ; Guo, Qinghong ; Gupta, Nishith ; Ji, Nuo ; Shen, Bang ; Xiao, Lihua ; Feng, Yaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenine</topic><topic>Analysis</topic><topic>Antiparasitic agents</topic><topic>Biology and Life Sciences</topic><topic>Carbon</topic><topic>CRISPR</topic><topic>Cytoplasm</topic><topic>Dehydrogenases</topic><topic>Depletion</topic><topic>Enzymes</topic><topic>Epimerase</topic><topic>Experiments</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Growth</topic><topic>Intracellular</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>NADPH-diaphorase</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nucleotides</topic><topic>Oxidative stress</topic><topic>Parasites</topic><topic>Pathogens</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Phosphates</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribose</topic><topic>Toxoplasma</topic><topic>Toxoplasma gondii</topic><topic>Transaldolase</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ningbo</creatorcontrib><creatorcontrib>Guo, Xuefang</creatorcontrib><creatorcontrib>Guo, Qinghong</creatorcontrib><creatorcontrib>Gupta, Nishith</creatorcontrib><creatorcontrib>Ji, Nuo</creatorcontrib><creatorcontrib>Shen, Bang</creatorcontrib><creatorcontrib>Xiao, Lihua</creatorcontrib><creatorcontrib>Feng, Yaoyu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ningbo</au><au>Guo, Xuefang</au><au>Guo, Qinghong</au><au>Gupta, Nishith</au><au>Ji, Nuo</au><au>Shen, Bang</au><au>Xiao, Lihua</au><au>Feng, Yaoyu</au><au>Soldati-Favre, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</atitle><jtitle>PLoS pathogens</jtitle><date>2022-09-19</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010864</spage><epage>e1010864</epage><pages>e1010864-e1010864</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36121870</pmid><doi>10.1371/journal.ppat.1010864</doi><tpages>e1010864</tpages><orcidid>https://orcid.org/0000-0002-8380-1246</orcidid><orcidid>https://orcid.org/0000-0001-8532-2727</orcidid><orcidid>https://orcid.org/0000-0003-0103-271X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2022-09, Vol.18 (9), p.e1010864-e1010864 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2725275163 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Adenine Analysis Antiparasitic agents Biology and Life Sciences Carbon CRISPR Cytoplasm Dehydrogenases Depletion Enzymes Epimerase Experiments Genes Genomes Glucose Growth Intracellular Localization Medicine and Health Sciences Metabolic pathways Metabolism Metabolites NADPH-diaphorase Nicotinamide Nicotinamide adenine dinucleotide Nucleotides Oxidative stress Parasites Pathogens Pentose Pentose phosphate pathway Phosphates Physical Sciences Physiological aspects Physiology Proteins Research and Analysis Methods Ribose Toxoplasma Toxoplasma gondii Transaldolase Virulence Virulence (Microbiology) Zoonoses |
title | Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20flexibilities%20and%20vulnerabilities%20in%20the%20pentose%20phosphate%20pathway%20of%20the%20zoonotic%20pathogen%20Toxoplasma%20gondii&rft.jtitle=PLoS%20pathogens&rft.au=Xia,%20Ningbo&rft.date=2022-09-19&rft.volume=18&rft.issue=9&rft.spage=e1010864&rft.epage=e1010864&rft.pages=e1010864-e1010864&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010864&rft_dat=%3Cgale_plos_%3EA720575254%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725275163&rft_id=info:pmid/36121870&rft_galeid=A720575254&rft_doaj_id=oai_doaj_org_article_5544a37fc2cf46a8a3201ab6b396cc71&rfr_iscdi=true |