Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii

Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2022-09, Vol.18 (9), p.e1010864-e1010864
Hauptverfasser: Xia, Ningbo, Guo, Xuefang, Guo, Qinghong, Gupta, Nishith, Ji, Nuo, Shen, Bang, Xiao, Lihua, Feng, Yaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010864
container_issue 9
container_start_page e1010864
container_title PLoS pathogens
container_volume 18
creator Xia, Ningbo
Guo, Xuefang
Guo, Qinghong
Gupta, Nishith
Ji, Nuo
Shen, Bang
Xiao, Lihua
Feng, Yaoyu
description Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.
doi_str_mv 10.1371/journal.ppat.1010864
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725275163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575254</galeid><doaj_id>oai_doaj_org_article_5544a37fc2cf46a8a3201ab6b396cc71</doaj_id><sourcerecordid>A720575254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwD5CIxKUcdvG3kwtSVfFRqYAE5WxNHCfrldcOsdNu-fV4u6FiUS_Ikseaeea1ZzxF8RKjJaYSv12HafTglsMAaYkRRpVgj4pjzDldSCrZ47_OR8WzGNcIMUyxeFocUYEJriQ6Lm4-mwRNcFaXnTNb21hnkzWxBN-W15PzZoR7n_VlWplyMD6FmO0qxGEFKZ8grW7gtgzdHfArBB9Sltz5Q298eRW2YXAQN1D2wbfWPi-edOCieTHbk-LHh_dX558Wl18_XpyfXS60oFVaiA7phkvDalrxVjBTtYQC5rXGXStqghtdE8J4S0DnEKm4REyzvENtDDf0pHi11x1ciGruWVREEk4kx4Jm4mJPtAHWahjtBsZbFcCqO0cYewVjLsYZxTljQGWnie6YgAooQRga0dBaaC1x1no33zY1G9Pq3KgR3IHoYcTblerDtap5_g8mssDpLDCGn5OJSW1s1MY58CZMu3djLmvEUJXR1_-gD1c3Uz3kAqzvQr5X70TVmSSIS044y9TyASqv1mysDt50NvsPEt4cJGQmmW3qYYpRXXz_9h_sl0OW7Vk9hhhH0933DiO1G_s_Rard2Kt57OlvzGj1qQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725275163</pqid></control><display><type>article</type><title>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Xia, Ningbo ; Guo, Xuefang ; Guo, Qinghong ; Gupta, Nishith ; Ji, Nuo ; Shen, Bang ; Xiao, Lihua ; Feng, Yaoyu</creator><contributor>Soldati-Favre, Dominique</contributor><creatorcontrib>Xia, Ningbo ; Guo, Xuefang ; Guo, Qinghong ; Gupta, Nishith ; Ji, Nuo ; Shen, Bang ; Xiao, Lihua ; Feng, Yaoyu ; Soldati-Favre, Dominique</creatorcontrib><description>Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010864</identifier><identifier>PMID: 36121870</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adenine ; Analysis ; Antiparasitic agents ; Biology and Life Sciences ; Carbon ; CRISPR ; Cytoplasm ; Dehydrogenases ; Depletion ; Enzymes ; Epimerase ; Experiments ; Genes ; Genomes ; Glucose ; Growth ; Intracellular ; Localization ; Medicine and Health Sciences ; Metabolic pathways ; Metabolism ; Metabolites ; NADPH-diaphorase ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nucleotides ; Oxidative stress ; Parasites ; Pathogens ; Pentose ; Pentose phosphate pathway ; Phosphates ; Physical Sciences ; Physiological aspects ; Physiology ; Proteins ; Research and Analysis Methods ; Ribose ; Toxoplasma ; Toxoplasma gondii ; Transaldolase ; Virulence ; Virulence (Microbiology) ; Zoonoses</subject><ispartof>PLoS pathogens, 2022-09, Vol.18 (9), p.e1010864-e1010864</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Xia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Xia et al 2022 Xia et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</citedby><cites>FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</cites><orcidid>0000-0002-8380-1246 ; 0000-0001-8532-2727 ; 0000-0003-0103-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521846/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521846/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Soldati-Favre, Dominique</contributor><creatorcontrib>Xia, Ningbo</creatorcontrib><creatorcontrib>Guo, Xuefang</creatorcontrib><creatorcontrib>Guo, Qinghong</creatorcontrib><creatorcontrib>Gupta, Nishith</creatorcontrib><creatorcontrib>Ji, Nuo</creatorcontrib><creatorcontrib>Shen, Bang</creatorcontrib><creatorcontrib>Xiao, Lihua</creatorcontrib><creatorcontrib>Feng, Yaoyu</creatorcontrib><title>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</title><title>PLoS pathogens</title><description>Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.</description><subject>Adenine</subject><subject>Analysis</subject><subject>Antiparasitic agents</subject><subject>Biology and Life Sciences</subject><subject>Carbon</subject><subject>CRISPR</subject><subject>Cytoplasm</subject><subject>Dehydrogenases</subject><subject>Depletion</subject><subject>Enzymes</subject><subject>Epimerase</subject><subject>Experiments</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Growth</subject><subject>Intracellular</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>NADPH-diaphorase</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nucleotides</subject><subject>Oxidative stress</subject><subject>Parasites</subject><subject>Pathogens</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Phosphates</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribose</subject><subject>Toxoplasma</subject><subject>Toxoplasma gondii</subject><subject>Transaldolase</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Zoonoses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwD5CIxKUcdvG3kwtSVfFRqYAE5WxNHCfrldcOsdNu-fV4u6FiUS_Ikseaeea1ZzxF8RKjJaYSv12HafTglsMAaYkRRpVgj4pjzDldSCrZ47_OR8WzGNcIMUyxeFocUYEJriQ6Lm4-mwRNcFaXnTNb21hnkzWxBN-W15PzZoR7n_VlWplyMD6FmO0qxGEFKZ8grW7gtgzdHfArBB9Sltz5Q298eRW2YXAQN1D2wbfWPi-edOCieTHbk-LHh_dX558Wl18_XpyfXS60oFVaiA7phkvDalrxVjBTtYQC5rXGXStqghtdE8J4S0DnEKm4REyzvENtDDf0pHi11x1ciGruWVREEk4kx4Jm4mJPtAHWahjtBsZbFcCqO0cYewVjLsYZxTljQGWnie6YgAooQRga0dBaaC1x1no33zY1G9Pq3KgR3IHoYcTblerDtap5_g8mssDpLDCGn5OJSW1s1MY58CZMu3djLmvEUJXR1_-gD1c3Uz3kAqzvQr5X70TVmSSIS044y9TyASqv1mysDt50NvsPEt4cJGQmmW3qYYpRXXz_9h_sl0OW7Vk9hhhH0933DiO1G_s_Rard2Kt57OlvzGj1qQ</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Xia, Ningbo</creator><creator>Guo, Xuefang</creator><creator>Guo, Qinghong</creator><creator>Gupta, Nishith</creator><creator>Ji, Nuo</creator><creator>Shen, Bang</creator><creator>Xiao, Lihua</creator><creator>Feng, Yaoyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8380-1246</orcidid><orcidid>https://orcid.org/0000-0001-8532-2727</orcidid><orcidid>https://orcid.org/0000-0003-0103-271X</orcidid></search><sort><creationdate>20220919</creationdate><title>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</title><author>Xia, Ningbo ; Guo, Xuefang ; Guo, Qinghong ; Gupta, Nishith ; Ji, Nuo ; Shen, Bang ; Xiao, Lihua ; Feng, Yaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-6f0cb57e49385d64e8d23a159c1fd6921bc92245d2ac8d2285704c4570a9ee5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenine</topic><topic>Analysis</topic><topic>Antiparasitic agents</topic><topic>Biology and Life Sciences</topic><topic>Carbon</topic><topic>CRISPR</topic><topic>Cytoplasm</topic><topic>Dehydrogenases</topic><topic>Depletion</topic><topic>Enzymes</topic><topic>Epimerase</topic><topic>Experiments</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Growth</topic><topic>Intracellular</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>NADPH-diaphorase</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nucleotides</topic><topic>Oxidative stress</topic><topic>Parasites</topic><topic>Pathogens</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Phosphates</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribose</topic><topic>Toxoplasma</topic><topic>Toxoplasma gondii</topic><topic>Transaldolase</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ningbo</creatorcontrib><creatorcontrib>Guo, Xuefang</creatorcontrib><creatorcontrib>Guo, Qinghong</creatorcontrib><creatorcontrib>Gupta, Nishith</creatorcontrib><creatorcontrib>Ji, Nuo</creatorcontrib><creatorcontrib>Shen, Bang</creatorcontrib><creatorcontrib>Xiao, Lihua</creatorcontrib><creatorcontrib>Feng, Yaoyu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ningbo</au><au>Guo, Xuefang</au><au>Guo, Qinghong</au><au>Gupta, Nishith</au><au>Ji, Nuo</au><au>Shen, Bang</au><au>Xiao, Lihua</au><au>Feng, Yaoyu</au><au>Soldati-Favre, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii</atitle><jtitle>PLoS pathogens</jtitle><date>2022-09-19</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010864</spage><epage>e1010864</epage><pages>e1010864-e1010864</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36121870</pmid><doi>10.1371/journal.ppat.1010864</doi><tpages>e1010864</tpages><orcidid>https://orcid.org/0000-0002-8380-1246</orcidid><orcidid>https://orcid.org/0000-0001-8532-2727</orcidid><orcidid>https://orcid.org/0000-0003-0103-271X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2022-09, Vol.18 (9), p.e1010864-e1010864
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2725275163
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Adenine
Analysis
Antiparasitic agents
Biology and Life Sciences
Carbon
CRISPR
Cytoplasm
Dehydrogenases
Depletion
Enzymes
Epimerase
Experiments
Genes
Genomes
Glucose
Growth
Intracellular
Localization
Medicine and Health Sciences
Metabolic pathways
Metabolism
Metabolites
NADPH-diaphorase
Nicotinamide
Nicotinamide adenine dinucleotide
Nucleotides
Oxidative stress
Parasites
Pathogens
Pentose
Pentose phosphate pathway
Phosphates
Physical Sciences
Physiological aspects
Physiology
Proteins
Research and Analysis Methods
Ribose
Toxoplasma
Toxoplasma gondii
Transaldolase
Virulence
Virulence (Microbiology)
Zoonoses
title Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20flexibilities%20and%20vulnerabilities%20in%20the%20pentose%20phosphate%20pathway%20of%20the%20zoonotic%20pathogen%20Toxoplasma%20gondii&rft.jtitle=PLoS%20pathogens&rft.au=Xia,%20Ningbo&rft.date=2022-09-19&rft.volume=18&rft.issue=9&rft.spage=e1010864&rft.epage=e1010864&rft.pages=e1010864-e1010864&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010864&rft_dat=%3Cgale_plos_%3EA720575254%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725275163&rft_id=info:pmid/36121870&rft_galeid=A720575254&rft_doaj_id=oai_doaj_org_article_5544a37fc2cf46a8a3201ab6b396cc71&rfr_iscdi=true