Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies
Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes ( IGHV1-69 and IGKV3-20) and form...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2022-09, Vol.18 (9), p.e1010450-e1010450 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010450 |
---|---|
container_issue | 9 |
container_start_page | e1010450 |
container_title | PLoS pathogens |
container_volume | 18 |
creator | Scheepers, Cathrine Kgagudi, Prudence Mzindle, Nonkululeko Gray, Elin S Moyo-Gwete, Thandeka Lambson, Bronwen E Oosthuysen, Brent Mabvakure, Batsirai Garrett, Nigel J Abdool Karim, Salim S Morris, Lynn Moore, Penny L |
description | Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (
IGHV1-69
and
IGKV3-20)
and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a
111.2
GW
111.3
motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards
111.2
GW
111.3
among some lineage members. Mutagenesis of CAP206-CH12 from
111.2
GL
111.3
to
111.2
GW
111.3
and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D
674
, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W
672
, F
673
, T
676
, and W
680
) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope. |
doi_str_mv | 10.1371/journal.ppat.1010450 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725274088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575102</galeid><doaj_id>oai_doaj_org_article_fbf5268d0dd44dbbb5f2f8afb6a19d60</doaj_id><sourcerecordid>A720575102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-f011862106c7023d254c3803c460b980be62adecb495c627d7a25bf63dfba8913</originalsourceid><addsrcrecordid>eNqVk9tuEzEQhlcIREvhDZCwxA1IJNhee717g1SVQiOVg8rh1vJhnLjarIPtDYRX4WVxaEAE5Qb5wtbM53_8jzVV9ZDgKakFeX4dxjiofrpaqTwlmGDG8a3qmHBeT0Qt2O2_zkfVvZSuMWakJs3d6qhuMGeUtsfVj5ewgsHCYACFASm0VtEr3QOKkLwdAfV-6XNCeQFIR1A2L1BwSA3oYvYZvXl_foUGGHNUvf_uh3lJZK-D3TxDFtLKZ0AmDGuIcxgygnXox-xLoa--6OgYlO03BwU8pPvVHaf6BA92-0n16dX5x7OLyeW717Oz08uJ4a3IE4cJaRtKcGMEprWlnJm6xbVhDdZdizU0VFkwmnXcNFRYoSjXrqmt06rtSH1SPbrRXfUhyV1fk6SCcioYbttCzG4IG9S1XEW_VHEjg_LyVyDEuVQxe9ODdNpx2rQWW8uY1VpzR12rnG4U6WyDi9aLXbVRL8Ga0pfifU90PzP4hZyHteyYEIx0ReDJTiCGLyOkLJc-Geh7NUAYt-_GnahZ127Rx_-gh93tqLkqBvzgQqlrtqLyVFDMBSelryfV9ABVloWlL38Mzpf43oWnexcKk-FbnqsxJTn7cPUf7Nt9lt2wJoaUIrg_vSNYbkfjt0m5HQ25G436J4ZRAug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725274088</pqid></control><display><type>article</type><title>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Scheepers, Cathrine ; Kgagudi, Prudence ; Mzindle, Nonkululeko ; Gray, Elin S ; Moyo-Gwete, Thandeka ; Lambson, Bronwen E ; Oosthuysen, Brent ; Mabvakure, Batsirai ; Garrett, Nigel J ; Abdool Karim, Salim S ; Morris, Lynn ; Moore, Penny L</creator><contributor>Douek, Daniel C.</contributor><creatorcontrib>Scheepers, Cathrine ; Kgagudi, Prudence ; Mzindle, Nonkululeko ; Gray, Elin S ; Moyo-Gwete, Thandeka ; Lambson, Bronwen E ; Oosthuysen, Brent ; Mabvakure, Batsirai ; Garrett, Nigel J ; Abdool Karim, Salim S ; Morris, Lynn ; Moore, Penny L ; Douek, Daniel C.</creatorcontrib><description>Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (
IGHV1-69
and
IGKV3-20)
and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a
111.2
GW
111.3
motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards
111.2
GW
111.3
among some lineage members. Mutagenesis of CAP206-CH12 from
111.2
GL
111.3
to
111.2
GW
111.3
and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D
674
, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W
672
, F
673
, T
676
, and W
680
) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010450</identifier><identifier>PMID: 36054228</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>AIDS vaccines ; Amino acids ; Antibodies ; Biology and Life Sciences ; Convergence ; Elbow ; Epitopes ; Evolution ; Evolutionary genetics ; Genes ; Glycoprotein gp41 ; HIV ; HIV antibodies ; Human immunodeficiency virus ; Hydrophobicity ; Infections ; Light ; Medicine and Health Sciences ; Monoclonal antibodies ; Mutagenesis ; Neutralization ; Neutralizing ; Physical Sciences ; Product development ; Research and Analysis Methods ; Residues ; Vaccines ; Viruses</subject><ispartof>PLoS pathogens, 2022-09, Vol.18 (9), p.e1010450-e1010450</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Scheepers et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Scheepers et al 2022 Scheepers et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c587t-f011862106c7023d254c3803c460b980be62adecb495c627d7a25bf63dfba8913</cites><orcidid>0000-0001-8719-4028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Douek, Daniel C.</contributor><creatorcontrib>Scheepers, Cathrine</creatorcontrib><creatorcontrib>Kgagudi, Prudence</creatorcontrib><creatorcontrib>Mzindle, Nonkululeko</creatorcontrib><creatorcontrib>Gray, Elin S</creatorcontrib><creatorcontrib>Moyo-Gwete, Thandeka</creatorcontrib><creatorcontrib>Lambson, Bronwen E</creatorcontrib><creatorcontrib>Oosthuysen, Brent</creatorcontrib><creatorcontrib>Mabvakure, Batsirai</creatorcontrib><creatorcontrib>Garrett, Nigel J</creatorcontrib><creatorcontrib>Abdool Karim, Salim S</creatorcontrib><creatorcontrib>Morris, Lynn</creatorcontrib><creatorcontrib>Moore, Penny L</creatorcontrib><title>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</title><title>PLoS pathogens</title><description>Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (
IGHV1-69
and
IGKV3-20)
and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a
111.2
GW
111.3
motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards
111.2
GW
111.3
among some lineage members. Mutagenesis of CAP206-CH12 from
111.2
GL
111.3
to
111.2
GW
111.3
and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D
674
, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W
672
, F
673
, T
676
, and W
680
) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.</description><subject>AIDS vaccines</subject><subject>Amino acids</subject><subject>Antibodies</subject><subject>Biology and Life Sciences</subject><subject>Convergence</subject><subject>Elbow</subject><subject>Epitopes</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Genes</subject><subject>Glycoprotein gp41</subject><subject>HIV</subject><subject>HIV antibodies</subject><subject>Human immunodeficiency virus</subject><subject>Hydrophobicity</subject><subject>Infections</subject><subject>Light</subject><subject>Medicine and Health Sciences</subject><subject>Monoclonal antibodies</subject><subject>Mutagenesis</subject><subject>Neutralization</subject><subject>Neutralizing</subject><subject>Physical Sciences</subject><subject>Product development</subject><subject>Research and Analysis Methods</subject><subject>Residues</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tuEzEQhlcIREvhDZCwxA1IJNhee717g1SVQiOVg8rh1vJhnLjarIPtDYRX4WVxaEAE5Qb5wtbM53_8jzVV9ZDgKakFeX4dxjiofrpaqTwlmGDG8a3qmHBeT0Qt2O2_zkfVvZSuMWakJs3d6qhuMGeUtsfVj5ewgsHCYACFASm0VtEr3QOKkLwdAfV-6XNCeQFIR1A2L1BwSA3oYvYZvXl_foUGGHNUvf_uh3lJZK-D3TxDFtLKZ0AmDGuIcxgygnXox-xLoa--6OgYlO03BwU8pPvVHaf6BA92-0n16dX5x7OLyeW717Oz08uJ4a3IE4cJaRtKcGMEprWlnJm6xbVhDdZdizU0VFkwmnXcNFRYoSjXrqmt06rtSH1SPbrRXfUhyV1fk6SCcioYbttCzG4IG9S1XEW_VHEjg_LyVyDEuVQxe9ODdNpx2rQWW8uY1VpzR12rnG4U6WyDi9aLXbVRL8Ga0pfifU90PzP4hZyHteyYEIx0ReDJTiCGLyOkLJc-Geh7NUAYt-_GnahZ127Rx_-gh93tqLkqBvzgQqlrtqLyVFDMBSelryfV9ABVloWlL38Mzpf43oWnexcKk-FbnqsxJTn7cPUf7Nt9lt2wJoaUIrg_vSNYbkfjt0m5HQ25G436J4ZRAug</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>Scheepers, Cathrine</creator><creator>Kgagudi, Prudence</creator><creator>Mzindle, Nonkululeko</creator><creator>Gray, Elin S</creator><creator>Moyo-Gwete, Thandeka</creator><creator>Lambson, Bronwen E</creator><creator>Oosthuysen, Brent</creator><creator>Mabvakure, Batsirai</creator><creator>Garrett, Nigel J</creator><creator>Abdool Karim, Salim S</creator><creator>Morris, Lynn</creator><creator>Moore, Penny L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8719-4028</orcidid></search><sort><creationdate>20220902</creationdate><title>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</title><author>Scheepers, Cathrine ; Kgagudi, Prudence ; Mzindle, Nonkululeko ; Gray, Elin S ; Moyo-Gwete, Thandeka ; Lambson, Bronwen E ; Oosthuysen, Brent ; Mabvakure, Batsirai ; Garrett, Nigel J ; Abdool Karim, Salim S ; Morris, Lynn ; Moore, Penny L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-f011862106c7023d254c3803c460b980be62adecb495c627d7a25bf63dfba8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AIDS vaccines</topic><topic>Amino acids</topic><topic>Antibodies</topic><topic>Biology and Life Sciences</topic><topic>Convergence</topic><topic>Elbow</topic><topic>Epitopes</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Genes</topic><topic>Glycoprotein gp41</topic><topic>HIV</topic><topic>HIV antibodies</topic><topic>Human immunodeficiency virus</topic><topic>Hydrophobicity</topic><topic>Infections</topic><topic>Light</topic><topic>Medicine and Health Sciences</topic><topic>Monoclonal antibodies</topic><topic>Mutagenesis</topic><topic>Neutralization</topic><topic>Neutralizing</topic><topic>Physical Sciences</topic><topic>Product development</topic><topic>Research and Analysis Methods</topic><topic>Residues</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheepers, Cathrine</creatorcontrib><creatorcontrib>Kgagudi, Prudence</creatorcontrib><creatorcontrib>Mzindle, Nonkululeko</creatorcontrib><creatorcontrib>Gray, Elin S</creatorcontrib><creatorcontrib>Moyo-Gwete, Thandeka</creatorcontrib><creatorcontrib>Lambson, Bronwen E</creatorcontrib><creatorcontrib>Oosthuysen, Brent</creatorcontrib><creatorcontrib>Mabvakure, Batsirai</creatorcontrib><creatorcontrib>Garrett, Nigel J</creatorcontrib><creatorcontrib>Abdool Karim, Salim S</creatorcontrib><creatorcontrib>Morris, Lynn</creatorcontrib><creatorcontrib>Moore, Penny L</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheepers, Cathrine</au><au>Kgagudi, Prudence</au><au>Mzindle, Nonkululeko</au><au>Gray, Elin S</au><au>Moyo-Gwete, Thandeka</au><au>Lambson, Bronwen E</au><au>Oosthuysen, Brent</au><au>Mabvakure, Batsirai</au><au>Garrett, Nigel J</au><au>Abdool Karim, Salim S</au><au>Morris, Lynn</au><au>Moore, Penny L</au><au>Douek, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</atitle><jtitle>PLoS pathogens</jtitle><date>2022-09-02</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010450</spage><epage>e1010450</epage><pages>e1010450-e1010450</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (
IGHV1-69
and
IGKV3-20)
and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a
111.2
GW
111.3
motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards
111.2
GW
111.3
among some lineage members. Mutagenesis of CAP206-CH12 from
111.2
GL
111.3
to
111.2
GW
111.3
and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D
674
, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W
672
, F
673
, T
676
, and W
680
) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36054228</pmid><doi>10.1371/journal.ppat.1010450</doi><tpages>e1010450</tpages><orcidid>https://orcid.org/0000-0001-8719-4028</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2022-09, Vol.18 (9), p.e1010450-e1010450 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2725274088 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | AIDS vaccines Amino acids Antibodies Biology and Life Sciences Convergence Elbow Epitopes Evolution Evolutionary genetics Genes Glycoprotein gp41 HIV HIV antibodies Human immunodeficiency virus Hydrophobicity Infections Light Medicine and Health Sciences Monoclonal antibodies Mutagenesis Neutralization Neutralizing Physical Sciences Product development Research and Analysis Methods Residues Vaccines Viruses |
title | Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20on%20a%20variable%20residue%20limits%20the%20breadth%20of%20an%20HIV%20MPER%20neutralizing%20antibody,%20despite%20convergent%20evolution%20with%20broadly%20neutralizing%20antibodies&rft.jtitle=PLoS%20pathogens&rft.au=Scheepers,%20Cathrine&rft.date=2022-09-02&rft.volume=18&rft.issue=9&rft.spage=e1010450&rft.epage=e1010450&rft.pages=e1010450-e1010450&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010450&rft_dat=%3Cgale_plos_%3EA720575102%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725274088&rft_id=info:pmid/36054228&rft_galeid=A720575102&rft_doaj_id=oai_doaj_org_article_fbf5268d0dd44dbbb5f2f8afb6a19d60&rfr_iscdi=true |