Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies

Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes ( IGHV1-69 and IGKV3-20) and form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2022-09, Vol.18 (9), p.e1010450-e1010450
Hauptverfasser: Scheepers, Cathrine, Kgagudi, Prudence, Mzindle, Nonkululeko, Gray, Elin S, Moyo-Gwete, Thandeka, Lambson, Bronwen E, Oosthuysen, Brent, Mabvakure, Batsirai, Garrett, Nigel J, Abdool Karim, Salim S, Morris, Lynn, Moore, Penny L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010450
container_issue 9
container_start_page e1010450
container_title PLoS pathogens
container_volume 18
creator Scheepers, Cathrine
Kgagudi, Prudence
Mzindle, Nonkululeko
Gray, Elin S
Moyo-Gwete, Thandeka
Lambson, Bronwen E
Oosthuysen, Brent
Mabvakure, Batsirai
Garrett, Nigel J
Abdool Karim, Salim S
Morris, Lynn
Moore, Penny L
description Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes ( IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2 GW 111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2 GW 111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2 GL 111.3 to 111.2 GW 111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D 674 , a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W 672 , F 673 , T 676 , and W 680 ) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.
doi_str_mv 10.1371/journal.ppat.1010450
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725274088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720575102</galeid><doaj_id>oai_doaj_org_article_fbf5268d0dd44dbbb5f2f8afb6a19d60</doaj_id><sourcerecordid>A720575102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-f011862106c7023d254c3803c460b980be62adecb495c627d7a25bf63dfba8913</originalsourceid><addsrcrecordid>eNqVk9tuEzEQhlcIREvhDZCwxA1IJNhee717g1SVQiOVg8rh1vJhnLjarIPtDYRX4WVxaEAE5Qb5wtbM53_8jzVV9ZDgKakFeX4dxjiofrpaqTwlmGDG8a3qmHBeT0Qt2O2_zkfVvZSuMWakJs3d6qhuMGeUtsfVj5ewgsHCYACFASm0VtEr3QOKkLwdAfV-6XNCeQFIR1A2L1BwSA3oYvYZvXl_foUGGHNUvf_uh3lJZK-D3TxDFtLKZ0AmDGuIcxgygnXox-xLoa--6OgYlO03BwU8pPvVHaf6BA92-0n16dX5x7OLyeW717Oz08uJ4a3IE4cJaRtKcGMEprWlnJm6xbVhDdZdizU0VFkwmnXcNFRYoSjXrqmt06rtSH1SPbrRXfUhyV1fk6SCcioYbttCzG4IG9S1XEW_VHEjg_LyVyDEuVQxe9ODdNpx2rQWW8uY1VpzR12rnG4U6WyDi9aLXbVRL8Ga0pfifU90PzP4hZyHteyYEIx0ReDJTiCGLyOkLJc-Geh7NUAYt-_GnahZ127Rx_-gh93tqLkqBvzgQqlrtqLyVFDMBSelryfV9ABVloWlL38Mzpf43oWnexcKk-FbnqsxJTn7cPUf7Nt9lt2wJoaUIrg_vSNYbkfjt0m5HQ25G436J4ZRAug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725274088</pqid></control><display><type>article</type><title>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Scheepers, Cathrine ; Kgagudi, Prudence ; Mzindle, Nonkululeko ; Gray, Elin S ; Moyo-Gwete, Thandeka ; Lambson, Bronwen E ; Oosthuysen, Brent ; Mabvakure, Batsirai ; Garrett, Nigel J ; Abdool Karim, Salim S ; Morris, Lynn ; Moore, Penny L</creator><contributor>Douek, Daniel C.</contributor><creatorcontrib>Scheepers, Cathrine ; Kgagudi, Prudence ; Mzindle, Nonkululeko ; Gray, Elin S ; Moyo-Gwete, Thandeka ; Lambson, Bronwen E ; Oosthuysen, Brent ; Mabvakure, Batsirai ; Garrett, Nigel J ; Abdool Karim, Salim S ; Morris, Lynn ; Moore, Penny L ; Douek, Daniel C.</creatorcontrib><description>Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize &gt;80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes ( IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2 GW 111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2 GW 111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2 GL 111.3 to 111.2 GW 111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D 674 , a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W 672 , F 673 , T 676 , and W 680 ) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010450</identifier><identifier>PMID: 36054228</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>AIDS vaccines ; Amino acids ; Antibodies ; Biology and Life Sciences ; Convergence ; Elbow ; Epitopes ; Evolution ; Evolutionary genetics ; Genes ; Glycoprotein gp41 ; HIV ; HIV antibodies ; Human immunodeficiency virus ; Hydrophobicity ; Infections ; Light ; Medicine and Health Sciences ; Monoclonal antibodies ; Mutagenesis ; Neutralization ; Neutralizing ; Physical Sciences ; Product development ; Research and Analysis Methods ; Residues ; Vaccines ; Viruses</subject><ispartof>PLoS pathogens, 2022-09, Vol.18 (9), p.e1010450-e1010450</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Scheepers et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Scheepers et al 2022 Scheepers et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c587t-f011862106c7023d254c3803c460b980be62adecb495c627d7a25bf63dfba8913</cites><orcidid>0000-0001-8719-4028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Douek, Daniel C.</contributor><creatorcontrib>Scheepers, Cathrine</creatorcontrib><creatorcontrib>Kgagudi, Prudence</creatorcontrib><creatorcontrib>Mzindle, Nonkululeko</creatorcontrib><creatorcontrib>Gray, Elin S</creatorcontrib><creatorcontrib>Moyo-Gwete, Thandeka</creatorcontrib><creatorcontrib>Lambson, Bronwen E</creatorcontrib><creatorcontrib>Oosthuysen, Brent</creatorcontrib><creatorcontrib>Mabvakure, Batsirai</creatorcontrib><creatorcontrib>Garrett, Nigel J</creatorcontrib><creatorcontrib>Abdool Karim, Salim S</creatorcontrib><creatorcontrib>Morris, Lynn</creatorcontrib><creatorcontrib>Moore, Penny L</creatorcontrib><title>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</title><title>PLoS pathogens</title><description>Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize &gt;80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes ( IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2 GW 111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2 GW 111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2 GL 111.3 to 111.2 GW 111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D 674 , a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W 672 , F 673 , T 676 , and W 680 ) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.</description><subject>AIDS vaccines</subject><subject>Amino acids</subject><subject>Antibodies</subject><subject>Biology and Life Sciences</subject><subject>Convergence</subject><subject>Elbow</subject><subject>Epitopes</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Genes</subject><subject>Glycoprotein gp41</subject><subject>HIV</subject><subject>HIV antibodies</subject><subject>Human immunodeficiency virus</subject><subject>Hydrophobicity</subject><subject>Infections</subject><subject>Light</subject><subject>Medicine and Health Sciences</subject><subject>Monoclonal antibodies</subject><subject>Mutagenesis</subject><subject>Neutralization</subject><subject>Neutralizing</subject><subject>Physical Sciences</subject><subject>Product development</subject><subject>Research and Analysis Methods</subject><subject>Residues</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tuEzEQhlcIREvhDZCwxA1IJNhee717g1SVQiOVg8rh1vJhnLjarIPtDYRX4WVxaEAE5Qb5wtbM53_8jzVV9ZDgKakFeX4dxjiofrpaqTwlmGDG8a3qmHBeT0Qt2O2_zkfVvZSuMWakJs3d6qhuMGeUtsfVj5ewgsHCYACFASm0VtEr3QOKkLwdAfV-6XNCeQFIR1A2L1BwSA3oYvYZvXl_foUGGHNUvf_uh3lJZK-D3TxDFtLKZ0AmDGuIcxgygnXox-xLoa--6OgYlO03BwU8pPvVHaf6BA92-0n16dX5x7OLyeW717Oz08uJ4a3IE4cJaRtKcGMEprWlnJm6xbVhDdZdizU0VFkwmnXcNFRYoSjXrqmt06rtSH1SPbrRXfUhyV1fk6SCcioYbttCzG4IG9S1XEW_VHEjg_LyVyDEuVQxe9ODdNpx2rQWW8uY1VpzR12rnG4U6WyDi9aLXbVRL8Ga0pfifU90PzP4hZyHteyYEIx0ReDJTiCGLyOkLJc-Geh7NUAYt-_GnahZ127Rx_-gh93tqLkqBvzgQqlrtqLyVFDMBSelryfV9ABVloWlL38Mzpf43oWnexcKk-FbnqsxJTn7cPUf7Nt9lt2wJoaUIrg_vSNYbkfjt0m5HQ25G436J4ZRAug</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>Scheepers, Cathrine</creator><creator>Kgagudi, Prudence</creator><creator>Mzindle, Nonkululeko</creator><creator>Gray, Elin S</creator><creator>Moyo-Gwete, Thandeka</creator><creator>Lambson, Bronwen E</creator><creator>Oosthuysen, Brent</creator><creator>Mabvakure, Batsirai</creator><creator>Garrett, Nigel J</creator><creator>Abdool Karim, Salim S</creator><creator>Morris, Lynn</creator><creator>Moore, Penny L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8719-4028</orcidid></search><sort><creationdate>20220902</creationdate><title>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</title><author>Scheepers, Cathrine ; Kgagudi, Prudence ; Mzindle, Nonkululeko ; Gray, Elin S ; Moyo-Gwete, Thandeka ; Lambson, Bronwen E ; Oosthuysen, Brent ; Mabvakure, Batsirai ; Garrett, Nigel J ; Abdool Karim, Salim S ; Morris, Lynn ; Moore, Penny L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-f011862106c7023d254c3803c460b980be62adecb495c627d7a25bf63dfba8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AIDS vaccines</topic><topic>Amino acids</topic><topic>Antibodies</topic><topic>Biology and Life Sciences</topic><topic>Convergence</topic><topic>Elbow</topic><topic>Epitopes</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Genes</topic><topic>Glycoprotein gp41</topic><topic>HIV</topic><topic>HIV antibodies</topic><topic>Human immunodeficiency virus</topic><topic>Hydrophobicity</topic><topic>Infections</topic><topic>Light</topic><topic>Medicine and Health Sciences</topic><topic>Monoclonal antibodies</topic><topic>Mutagenesis</topic><topic>Neutralization</topic><topic>Neutralizing</topic><topic>Physical Sciences</topic><topic>Product development</topic><topic>Research and Analysis Methods</topic><topic>Residues</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheepers, Cathrine</creatorcontrib><creatorcontrib>Kgagudi, Prudence</creatorcontrib><creatorcontrib>Mzindle, Nonkululeko</creatorcontrib><creatorcontrib>Gray, Elin S</creatorcontrib><creatorcontrib>Moyo-Gwete, Thandeka</creatorcontrib><creatorcontrib>Lambson, Bronwen E</creatorcontrib><creatorcontrib>Oosthuysen, Brent</creatorcontrib><creatorcontrib>Mabvakure, Batsirai</creatorcontrib><creatorcontrib>Garrett, Nigel J</creatorcontrib><creatorcontrib>Abdool Karim, Salim S</creatorcontrib><creatorcontrib>Morris, Lynn</creatorcontrib><creatorcontrib>Moore, Penny L</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheepers, Cathrine</au><au>Kgagudi, Prudence</au><au>Mzindle, Nonkululeko</au><au>Gray, Elin S</au><au>Moyo-Gwete, Thandeka</au><au>Lambson, Bronwen E</au><au>Oosthuysen, Brent</au><au>Mabvakure, Batsirai</au><au>Garrett, Nigel J</au><au>Abdool Karim, Salim S</au><au>Morris, Lynn</au><au>Moore, Penny L</au><au>Douek, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies</atitle><jtitle>PLoS pathogens</jtitle><date>2022-09-02</date><risdate>2022</risdate><volume>18</volume><issue>9</issue><spage>e1010450</spage><epage>e1010450</epage><pages>e1010450-e1010450</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize &gt;80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes ( IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2 GW 111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2 GW 111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2 GL 111.3 to 111.2 GW 111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D 674 , a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W 672 , F 673 , T 676 , and W 680 ) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36054228</pmid><doi>10.1371/journal.ppat.1010450</doi><tpages>e1010450</tpages><orcidid>https://orcid.org/0000-0001-8719-4028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2022-09, Vol.18 (9), p.e1010450-e1010450
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2725274088
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects AIDS vaccines
Amino acids
Antibodies
Biology and Life Sciences
Convergence
Elbow
Epitopes
Evolution
Evolutionary genetics
Genes
Glycoprotein gp41
HIV
HIV antibodies
Human immunodeficiency virus
Hydrophobicity
Infections
Light
Medicine and Health Sciences
Monoclonal antibodies
Mutagenesis
Neutralization
Neutralizing
Physical Sciences
Product development
Research and Analysis Methods
Residues
Vaccines
Viruses
title Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20on%20a%20variable%20residue%20limits%20the%20breadth%20of%20an%20HIV%20MPER%20neutralizing%20antibody,%20despite%20convergent%20evolution%20with%20broadly%20neutralizing%20antibodies&rft.jtitle=PLoS%20pathogens&rft.au=Scheepers,%20Cathrine&rft.date=2022-09-02&rft.volume=18&rft.issue=9&rft.spage=e1010450&rft.epage=e1010450&rft.pages=e1010450-e1010450&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010450&rft_dat=%3Cgale_plos_%3EA720575102%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725274088&rft_id=info:pmid/36054228&rft_galeid=A720575102&rft_doaj_id=oai_doaj_org_article_fbf5268d0dd44dbbb5f2f8afb6a19d60&rfr_iscdi=true