Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle
The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2022-09, Vol.20 (9), p.e3001743-e3001743 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3001743 |
---|---|
container_issue | 9 |
container_start_page | e3001743 |
container_title | PLoS biology |
container_volume | 20 |
creator | Hoces, Daniel Lan, Jiayi Sun, Wenfei Geiser, Tobias Stäubli, Melanie L Cappio Barazzone, Elisa Arnoldini, Markus Challa, Tenagne D Klug, Manuel Kellenberger, Alexandra Nowok, Sven Faccin, Erica Macpherson, Andrew J Stecher, Bärbel Sunagawa, Shinichi Zenobi, Renato Hardt, Wolf-Dietrich Wolfrum, Christian Slack, Emma |
description | The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium. |
doi_str_mv | 10.1371/journal.pbio.3001743 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725272818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A721753470</galeid><doaj_id>oai_doaj_org_article_d6683333a5bf460385a96fb0128c1778</doaj_id><sourcerecordid>A721753470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-5c2e2a36fb49456baf396e3d0a82fafed1c251c22e4350959eeead1c585f417b3</originalsourceid><addsrcrecordid>eNqVk9-L1DAQx4soeJ7-B4IFX_Rh1_xomvRFOA5_LJwe-Os1TNNJL0u3OZN0cf97s7tVXLkHbQgJ0898JzPJFMVTSpaUS_pq7acwwrC8bZ1fckKorPi94oyKSiykUuL-H_uHxaMY14Qw1jB1VtgPmKD1gzNlQOPHmFyakvNj6W3ZY9gsbEAsN85g2e5KKPvRJ5_jpOyRreGwh3ILwWEs_RZDmW6wNC4Y6ByMpdmZAR8XDywMEZ_M63nx9e2bL5fvF1fX71aXF1cLU0uWFsIwZMBr21ZNJeoWLG9q5B0BxSxY7KhhIk-GFRekEQ0iQjYKJWxFZcvPi2dH3dvBRz3XJWommchTUZWJ1ZHoPKz1bXAbCDvtwemDwYdeQ8jJDai7ulY8fyBaW9WEKwFNPhqhTBkq5V7r9RxtajfYGRxTgOFE9PTP6G5077e6qZSSjcwCL2aB4L9PGJPeuGhwGGBEP-3PTWvSECJJRp__hd6d3Uz1kBNwo_U5rtmL6gvJqBS8Omgt76Dy6DBfqR_Rumw_cXh54pCZhD9SD1OMevX503-wH_-dvf52ylZHNr-5GAPa33WmRO_b4FdB9L4N9NwG_CdeQ_qY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725272818</pqid></control><display><type>article</type><title>Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Hoces, Daniel ; Lan, Jiayi ; Sun, Wenfei ; Geiser, Tobias ; Stäubli, Melanie L ; Cappio Barazzone, Elisa ; Arnoldini, Markus ; Challa, Tenagne D ; Klug, Manuel ; Kellenberger, Alexandra ; Nowok, Sven ; Faccin, Erica ; Macpherson, Andrew J ; Stecher, Bärbel ; Sunagawa, Shinichi ; Zenobi, Renato ; Hardt, Wolf-Dietrich ; Wolfrum, Christian ; Slack, Emma</creator><contributor>Suez, Jotham</contributor><creatorcontrib>Hoces, Daniel ; Lan, Jiayi ; Sun, Wenfei ; Geiser, Tobias ; Stäubli, Melanie L ; Cappio Barazzone, Elisa ; Arnoldini, Markus ; Challa, Tenagne D ; Klug, Manuel ; Kellenberger, Alexandra ; Nowok, Sven ; Faccin, Erica ; Macpherson, Andrew J ; Stecher, Bärbel ; Sunagawa, Shinichi ; Zenobi, Renato ; Hardt, Wolf-Dietrich ; Wolfrum, Christian ; Slack, Emma ; Suez, Jotham</creatorcontrib><description>The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001743</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Animal models ; Appetite ; Biology and Life Sciences ; Body composition ; Body fat ; Calories ; Circadian rhythms ; Diet ; Dissection ; Energy balance ; Energy expenditure ; Energy recovery ; Energy storage ; Fasting ; Food ; Food contamination ; Food intake ; Gene expression ; Germfree ; Glucose metabolism ; Glycogen ; Glycogens ; Gnotobiotic ; Intestinal microflora ; Liver ; Medicine and Health Sciences ; Metabolism ; Microbial metabolism ; Microbiological research ; Microbiota ; Microbiota (Symbiotic organisms) ; Pathogens ; Physical Sciences ; Physiological aspects ; Research and Analysis Methods ; Respiratory quotient ; Substrates</subject><ispartof>PLoS biology, 2022-09, Vol.20 (9), p.e3001743-e3001743</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Hoces et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Hoces et al 2022 Hoces et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-5c2e2a36fb49456baf396e3d0a82fafed1c251c22e4350959eeead1c585f417b3</citedby><cites>FETCH-LOGICAL-c672t-5c2e2a36fb49456baf396e3d0a82fafed1c251c22e4350959eeead1c585f417b3</cites><orcidid>0000-0002-9892-6420 ; 0000-0003-3770-1348 ; 0000-0001-5762-6010 ; 0000-0002-2473-1145 ; 0000-0002-7192-0184 ; 0000-0002-3862-6805 ; 0000-0002-7445-5193 ; 0000-0001-5211-4358 ; 0000-0002-2278-0779 ; 0000-0002-1451-5166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Suez, Jotham</contributor><creatorcontrib>Hoces, Daniel</creatorcontrib><creatorcontrib>Lan, Jiayi</creatorcontrib><creatorcontrib>Sun, Wenfei</creatorcontrib><creatorcontrib>Geiser, Tobias</creatorcontrib><creatorcontrib>Stäubli, Melanie L</creatorcontrib><creatorcontrib>Cappio Barazzone, Elisa</creatorcontrib><creatorcontrib>Arnoldini, Markus</creatorcontrib><creatorcontrib>Challa, Tenagne D</creatorcontrib><creatorcontrib>Klug, Manuel</creatorcontrib><creatorcontrib>Kellenberger, Alexandra</creatorcontrib><creatorcontrib>Nowok, Sven</creatorcontrib><creatorcontrib>Faccin, Erica</creatorcontrib><creatorcontrib>Macpherson, Andrew J</creatorcontrib><creatorcontrib>Stecher, Bärbel</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Zenobi, Renato</creatorcontrib><creatorcontrib>Hardt, Wolf-Dietrich</creatorcontrib><creatorcontrib>Wolfrum, Christian</creatorcontrib><creatorcontrib>Slack, Emma</creatorcontrib><title>Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle</title><title>PLoS biology</title><description>The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.</description><subject>Animal models</subject><subject>Appetite</subject><subject>Biology and Life Sciences</subject><subject>Body composition</subject><subject>Body fat</subject><subject>Calories</subject><subject>Circadian rhythms</subject><subject>Diet</subject><subject>Dissection</subject><subject>Energy balance</subject><subject>Energy expenditure</subject><subject>Energy recovery</subject><subject>Energy storage</subject><subject>Fasting</subject><subject>Food</subject><subject>Food contamination</subject><subject>Food intake</subject><subject>Gene expression</subject><subject>Germfree</subject><subject>Glucose metabolism</subject><subject>Glycogen</subject><subject>Glycogens</subject><subject>Gnotobiotic</subject><subject>Intestinal microflora</subject><subject>Liver</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Microbial metabolism</subject><subject>Microbiological research</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Pathogens</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Respiratory quotient</subject><subject>Substrates</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-L1DAQx4soeJ7-B4IFX_Rh1_xomvRFOA5_LJwe-Os1TNNJL0u3OZN0cf97s7tVXLkHbQgJ0898JzPJFMVTSpaUS_pq7acwwrC8bZ1fckKorPi94oyKSiykUuL-H_uHxaMY14Qw1jB1VtgPmKD1gzNlQOPHmFyakvNj6W3ZY9gsbEAsN85g2e5KKPvRJ5_jpOyRreGwh3ILwWEs_RZDmW6wNC4Y6ByMpdmZAR8XDywMEZ_M63nx9e2bL5fvF1fX71aXF1cLU0uWFsIwZMBr21ZNJeoWLG9q5B0BxSxY7KhhIk-GFRekEQ0iQjYKJWxFZcvPi2dH3dvBRz3XJWommchTUZWJ1ZHoPKz1bXAbCDvtwemDwYdeQ8jJDai7ulY8fyBaW9WEKwFNPhqhTBkq5V7r9RxtajfYGRxTgOFE9PTP6G5077e6qZSSjcwCL2aB4L9PGJPeuGhwGGBEP-3PTWvSECJJRp__hd6d3Uz1kBNwo_U5rtmL6gvJqBS8Omgt76Dy6DBfqR_Rumw_cXh54pCZhD9SD1OMevX503-wH_-dvf52ylZHNr-5GAPa33WmRO_b4FdB9L4N9NwG_CdeQ_qY</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Hoces, Daniel</creator><creator>Lan, Jiayi</creator><creator>Sun, Wenfei</creator><creator>Geiser, Tobias</creator><creator>Stäubli, Melanie L</creator><creator>Cappio Barazzone, Elisa</creator><creator>Arnoldini, Markus</creator><creator>Challa, Tenagne D</creator><creator>Klug, Manuel</creator><creator>Kellenberger, Alexandra</creator><creator>Nowok, Sven</creator><creator>Faccin, Erica</creator><creator>Macpherson, Andrew J</creator><creator>Stecher, Bärbel</creator><creator>Sunagawa, Shinichi</creator><creator>Zenobi, Renato</creator><creator>Hardt, Wolf-Dietrich</creator><creator>Wolfrum, Christian</creator><creator>Slack, Emma</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-9892-6420</orcidid><orcidid>https://orcid.org/0000-0003-3770-1348</orcidid><orcidid>https://orcid.org/0000-0001-5762-6010</orcidid><orcidid>https://orcid.org/0000-0002-2473-1145</orcidid><orcidid>https://orcid.org/0000-0002-7192-0184</orcidid><orcidid>https://orcid.org/0000-0002-3862-6805</orcidid><orcidid>https://orcid.org/0000-0002-7445-5193</orcidid><orcidid>https://orcid.org/0000-0001-5211-4358</orcidid><orcidid>https://orcid.org/0000-0002-2278-0779</orcidid><orcidid>https://orcid.org/0000-0002-1451-5166</orcidid></search><sort><creationdate>20220920</creationdate><title>Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle</title><author>Hoces, Daniel ; Lan, Jiayi ; Sun, Wenfei ; Geiser, Tobias ; Stäubli, Melanie L ; Cappio Barazzone, Elisa ; Arnoldini, Markus ; Challa, Tenagne D ; Klug, Manuel ; Kellenberger, Alexandra ; Nowok, Sven ; Faccin, Erica ; Macpherson, Andrew J ; Stecher, Bärbel ; Sunagawa, Shinichi ; Zenobi, Renato ; Hardt, Wolf-Dietrich ; Wolfrum, Christian ; Slack, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-5c2e2a36fb49456baf396e3d0a82fafed1c251c22e4350959eeead1c585f417b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal models</topic><topic>Appetite</topic><topic>Biology and Life Sciences</topic><topic>Body composition</topic><topic>Body fat</topic><topic>Calories</topic><topic>Circadian rhythms</topic><topic>Diet</topic><topic>Dissection</topic><topic>Energy balance</topic><topic>Energy expenditure</topic><topic>Energy recovery</topic><topic>Energy storage</topic><topic>Fasting</topic><topic>Food</topic><topic>Food contamination</topic><topic>Food intake</topic><topic>Gene expression</topic><topic>Germfree</topic><topic>Glucose metabolism</topic><topic>Glycogen</topic><topic>Glycogens</topic><topic>Gnotobiotic</topic><topic>Intestinal microflora</topic><topic>Liver</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Microbial metabolism</topic><topic>Microbiological research</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Pathogens</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Respiratory quotient</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoces, Daniel</creatorcontrib><creatorcontrib>Lan, Jiayi</creatorcontrib><creatorcontrib>Sun, Wenfei</creatorcontrib><creatorcontrib>Geiser, Tobias</creatorcontrib><creatorcontrib>Stäubli, Melanie L</creatorcontrib><creatorcontrib>Cappio Barazzone, Elisa</creatorcontrib><creatorcontrib>Arnoldini, Markus</creatorcontrib><creatorcontrib>Challa, Tenagne D</creatorcontrib><creatorcontrib>Klug, Manuel</creatorcontrib><creatorcontrib>Kellenberger, Alexandra</creatorcontrib><creatorcontrib>Nowok, Sven</creatorcontrib><creatorcontrib>Faccin, Erica</creatorcontrib><creatorcontrib>Macpherson, Andrew J</creatorcontrib><creatorcontrib>Stecher, Bärbel</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Zenobi, Renato</creatorcontrib><creatorcontrib>Hardt, Wolf-Dietrich</creatorcontrib><creatorcontrib>Wolfrum, Christian</creatorcontrib><creatorcontrib>Slack, Emma</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoces, Daniel</au><au>Lan, Jiayi</au><au>Sun, Wenfei</au><au>Geiser, Tobias</au><au>Stäubli, Melanie L</au><au>Cappio Barazzone, Elisa</au><au>Arnoldini, Markus</au><au>Challa, Tenagne D</au><au>Klug, Manuel</au><au>Kellenberger, Alexandra</au><au>Nowok, Sven</au><au>Faccin, Erica</au><au>Macpherson, Andrew J</au><au>Stecher, Bärbel</au><au>Sunagawa, Shinichi</au><au>Zenobi, Renato</au><au>Hardt, Wolf-Dietrich</au><au>Wolfrum, Christian</au><au>Slack, Emma</au><au>Suez, Jotham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle</atitle><jtitle>PLoS biology</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>e3001743</spage><epage>e3001743</epage><pages>e3001743-e3001743</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pbio.3001743</doi><orcidid>https://orcid.org/0000-0002-9892-6420</orcidid><orcidid>https://orcid.org/0000-0003-3770-1348</orcidid><orcidid>https://orcid.org/0000-0001-5762-6010</orcidid><orcidid>https://orcid.org/0000-0002-2473-1145</orcidid><orcidid>https://orcid.org/0000-0002-7192-0184</orcidid><orcidid>https://orcid.org/0000-0002-3862-6805</orcidid><orcidid>https://orcid.org/0000-0002-7445-5193</orcidid><orcidid>https://orcid.org/0000-0001-5211-4358</orcidid><orcidid>https://orcid.org/0000-0002-2278-0779</orcidid><orcidid>https://orcid.org/0000-0002-1451-5166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2022-09, Vol.20 (9), p.e3001743-e3001743 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2725272818 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Animal models Appetite Biology and Life Sciences Body composition Body fat Calories Circadian rhythms Diet Dissection Energy balance Energy expenditure Energy recovery Energy storage Fasting Food Food contamination Food intake Gene expression Germfree Glucose metabolism Glycogen Glycogens Gnotobiotic Intestinal microflora Liver Medicine and Health Sciences Metabolism Microbial metabolism Microbiological research Microbiota Microbiota (Symbiotic organisms) Pathogens Physical Sciences Physiological aspects Research and Analysis Methods Respiratory quotient Substrates |
title | Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20reconstitution%20of%20germ-free%20mice%20by%20a%20gnotobiotic%20microbiota%20varies%20over%20the%20circadian%20cycle&rft.jtitle=PLoS%20biology&rft.au=Hoces,%20Daniel&rft.date=2022-09-20&rft.volume=20&rft.issue=9&rft.spage=e3001743&rft.epage=e3001743&rft.pages=e3001743-e3001743&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001743&rft_dat=%3Cgale_plos_%3EA721753470%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725272818&rft_id=info:pmid/&rft_galeid=A721753470&rft_doaj_id=oai_doaj_org_article_d6683333a5bf460385a96fb0128c1778&rfr_iscdi=true |