A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT)
We hypothesized that a drug's clinical signature (or phenotype) of liver injury can be assessed and used to quantitatively develop a computer-assisted DILI causality assessment-tool (DILI-CAT). Therefore, we evaluated drug-specific DILI-phenotypes for amoxicillin-clavulanate (AMX/CLA), cefazoli...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-09, Vol.17 (9), p.e0271304 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e0271304 |
container_title | PloS one |
container_volume | 17 |
creator | Tillmann, Hans L Suzuki, Ayako Merz, Michael Hermann, Richard Rockey, Don C |
description | We hypothesized that a drug's clinical signature (or phenotype) of liver injury can be assessed and used to quantitatively develop a computer-assisted DILI causality assessment-tool (DILI-CAT). Therefore, we evaluated drug-specific DILI-phenotypes for amoxicillin-clavulanate (AMX/CLA), cefazolin, cyproterone, and Polygonum multiflorum using data from published case series, to develop DILI-CAT scores for each drug. Drug specific phenotypes were made up of the following three clinical features: (1) latency, (2) R-value, and (3) AST/ALT ratio. A point allocation system was developed with points allocated depending on the variance from the norm (or "core") for the 3 variables in published datasets. The four drugs had significantly different phenotypes based on latency, R-value, and AST/ALT ratio. The median cyproterone latency was 150 days versus < 43 days for the other three drugs (median: 26 for AMX/CLA, 20 for cefazolin, and 20 for Polygonum multiflorum; p |
doi_str_mv | 10.1371/journal.pone.0271304 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2719396982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720202563</galeid><doaj_id>oai_doaj_org_article_548948ce8b004c42a7b62caad4263eed</doaj_id><sourcerecordid>A720202563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-5cc1896fdd195c062e15f8c1ff064e06ac152ecd207e3d89dcc82dfe779af9833</originalsourceid><addsrcrecordid>eNqNkm2LEzEQxxdR8Kx-A8EFQe5ebM3DbnbzRij1qVA40NO3IU1m25Tsppdki_32pnaVW1CQeZFk8pt_ZiaTZS8xmmNa47d7N_he2vnB9TBHpMYUlY-yK8wpKRhB9PGD_dPsWQh7hCraMHaVwSLv3RFsfj_IPpooozlCrlx3GCL4QoZgQgSdaz9sC9PrQaWDTYzPTb8f_ClXcgjSmnjKEwwhdNDHPDpn8-v3q_WqWC7ubp5nT1ppA7wY11n27eOHu-XnYn37abVcrAvFGI9FpRRuOGu1xrxSiBHAVdso3LaIlYCYVLgioDRBNVDdcK1UQ3QLdc1lyxtKZ9mri-7BuiDGtgSROsIpZ7whiVhdCO3kXhy86aQ_CSeN-OVwfiukj0ZZEFXZ8LJR0GwQKlVJZL1hREmpS8IogE5a78bXhk0HWqXCvbQT0elNb3Zi646CVwTzlNIsez0KeHc_QIj_SHmktjJlZfrWJTHVmaDEoiYoWcXOpc__QiXT0BmVBqM1yT8JuJkEJCbCj7hN3xnE6uuX_2dvv0_ZNw_YHUgbd8HZIRrXhylYXkDlXQge2j-dw0ic5_p3N8R5rsU41_Qnlbrr-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719396982</pqid></control><display><type>article</type><title>A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT)</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tillmann, Hans L ; Suzuki, Ayako ; Merz, Michael ; Hermann, Richard ; Rockey, Don C</creator><creatorcontrib>Tillmann, Hans L ; Suzuki, Ayako ; Merz, Michael ; Hermann, Richard ; Rockey, Don C</creatorcontrib><description>We hypothesized that a drug's clinical signature (or phenotype) of liver injury can be assessed and used to quantitatively develop a computer-assisted DILI causality assessment-tool (DILI-CAT). Therefore, we evaluated drug-specific DILI-phenotypes for amoxicillin-clavulanate (AMX/CLA), cefazolin, cyproterone, and Polygonum multiflorum using data from published case series, to develop DILI-CAT scores for each drug. Drug specific phenotypes were made up of the following three clinical features: (1) latency, (2) R-value, and (3) AST/ALT ratio. A point allocation system was developed with points allocated depending on the variance from the norm (or "core") for the 3 variables in published datasets. The four drugs had significantly different phenotypes based on latency, R-value, and AST/ALT ratio. The median cyproterone latency was 150 days versus < 43 days for the other three drugs (median: 26 for AMX/CLA, 20 for cefazolin, and 20 for Polygonum multiflorum; p<0.001). The R-value for the four drugs was also significantly different among drugs (cyproterone [median 12.4] and Polygonum multiflorum [median 10.9]) from AMX/CLA [median 1.44] and cefazolin [median 1.57; p<0.001]). DILI-CAT scores effectively separated cyproterone and Polygonum multiflorum from AMX/CLA and cefazolin, respectively (p<0.001). As expected, because of phenotypic overlap, AMX/CLA and cefazolin could not be well differentiated. DILI-CAT is a data-driven, diagnostic tool built to define drug-specific phenotypes for DILI adjudication. The data provide proof of principle that a drug-specific, data-driven causality assessment tool can be developed for different drugs and raise the possibility that such a process could enhance causality assessment methods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0271304</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adverse and side effects ; Amoxicillin ; Analysis ; Aquatic plants ; Biology and Life Sciences ; Causality ; Cefazolin ; Computer-aided medical diagnosis ; Diagnosis ; Drugs ; Genotype & phenotype ; Latency ; Liver ; Liver diseases ; Medical diagnosis ; Medicine and Health Sciences ; Methods ; Normal distribution ; Phenotype ; Phenotypes ; Physical Sciences ; Polygonum multiflorum ; Research and Analysis Methods ; Variables</subject><ispartof>PloS one, 2022-09, Vol.17 (9), p.e0271304</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-5cc1896fdd195c062e15f8c1ff064e06ac152ecd207e3d89dcc82dfe779af9833</citedby><cites>FETCH-LOGICAL-c669t-5cc1896fdd195c062e15f8c1ff064e06ac152ecd207e3d89dcc82dfe779af9833</cites><orcidid>0000-0003-1401-2208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521919/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521919/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Tillmann, Hans L</creatorcontrib><creatorcontrib>Suzuki, Ayako</creatorcontrib><creatorcontrib>Merz, Michael</creatorcontrib><creatorcontrib>Hermann, Richard</creatorcontrib><creatorcontrib>Rockey, Don C</creatorcontrib><title>A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT)</title><title>PloS one</title><description>We hypothesized that a drug's clinical signature (or phenotype) of liver injury can be assessed and used to quantitatively develop a computer-assisted DILI causality assessment-tool (DILI-CAT). Therefore, we evaluated drug-specific DILI-phenotypes for amoxicillin-clavulanate (AMX/CLA), cefazolin, cyproterone, and Polygonum multiflorum using data from published case series, to develop DILI-CAT scores for each drug. Drug specific phenotypes were made up of the following three clinical features: (1) latency, (2) R-value, and (3) AST/ALT ratio. A point allocation system was developed with points allocated depending on the variance from the norm (or "core") for the 3 variables in published datasets. The four drugs had significantly different phenotypes based on latency, R-value, and AST/ALT ratio. The median cyproterone latency was 150 days versus < 43 days for the other three drugs (median: 26 for AMX/CLA, 20 for cefazolin, and 20 for Polygonum multiflorum; p<0.001). The R-value for the four drugs was also significantly different among drugs (cyproterone [median 12.4] and Polygonum multiflorum [median 10.9]) from AMX/CLA [median 1.44] and cefazolin [median 1.57; p<0.001]). DILI-CAT scores effectively separated cyproterone and Polygonum multiflorum from AMX/CLA and cefazolin, respectively (p<0.001). As expected, because of phenotypic overlap, AMX/CLA and cefazolin could not be well differentiated. DILI-CAT is a data-driven, diagnostic tool built to define drug-specific phenotypes for DILI adjudication. The data provide proof of principle that a drug-specific, data-driven causality assessment tool can be developed for different drugs and raise the possibility that such a process could enhance causality assessment methods.</description><subject>Adverse and side effects</subject><subject>Amoxicillin</subject><subject>Analysis</subject><subject>Aquatic plants</subject><subject>Biology and Life Sciences</subject><subject>Causality</subject><subject>Cefazolin</subject><subject>Computer-aided medical diagnosis</subject><subject>Diagnosis</subject><subject>Drugs</subject><subject>Genotype & phenotype</subject><subject>Latency</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Medical diagnosis</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Polygonum multiflorum</subject><subject>Research and Analysis Methods</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm2LEzEQxxdR8Kx-A8EFQe5ebM3DbnbzRij1qVA40NO3IU1m25Tsppdki_32pnaVW1CQeZFk8pt_ZiaTZS8xmmNa47d7N_he2vnB9TBHpMYUlY-yK8wpKRhB9PGD_dPsWQh7hCraMHaVwSLv3RFsfj_IPpooozlCrlx3GCL4QoZgQgSdaz9sC9PrQaWDTYzPTb8f_ClXcgjSmnjKEwwhdNDHPDpn8-v3q_WqWC7ubp5nT1ppA7wY11n27eOHu-XnYn37abVcrAvFGI9FpRRuOGu1xrxSiBHAVdso3LaIlYCYVLgioDRBNVDdcK1UQ3QLdc1lyxtKZ9mri-7BuiDGtgSROsIpZ7whiVhdCO3kXhy86aQ_CSeN-OVwfiukj0ZZEFXZ8LJR0GwQKlVJZL1hREmpS8IogE5a78bXhk0HWqXCvbQT0elNb3Zi646CVwTzlNIsez0KeHc_QIj_SHmktjJlZfrWJTHVmaDEoiYoWcXOpc__QiXT0BmVBqM1yT8JuJkEJCbCj7hN3xnE6uuX_2dvv0_ZNw_YHUgbd8HZIRrXhylYXkDlXQge2j-dw0ic5_p3N8R5rsU41_Qnlbrr-Q</recordid><startdate>20220929</startdate><enddate>20220929</enddate><creator>Tillmann, Hans L</creator><creator>Suzuki, Ayako</creator><creator>Merz, Michael</creator><creator>Hermann, Richard</creator><creator>Rockey, Don C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1401-2208</orcidid></search><sort><creationdate>20220929</creationdate><title>A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT)</title><author>Tillmann, Hans L ; Suzuki, Ayako ; Merz, Michael ; Hermann, Richard ; Rockey, Don C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-5cc1896fdd195c062e15f8c1ff064e06ac152ecd207e3d89dcc82dfe779af9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adverse and side effects</topic><topic>Amoxicillin</topic><topic>Analysis</topic><topic>Aquatic plants</topic><topic>Biology and Life Sciences</topic><topic>Causality</topic><topic>Cefazolin</topic><topic>Computer-aided medical diagnosis</topic><topic>Diagnosis</topic><topic>Drugs</topic><topic>Genotype & phenotype</topic><topic>Latency</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Medical diagnosis</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Polygonum multiflorum</topic><topic>Research and Analysis Methods</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tillmann, Hans L</creatorcontrib><creatorcontrib>Suzuki, Ayako</creatorcontrib><creatorcontrib>Merz, Michael</creatorcontrib><creatorcontrib>Hermann, Richard</creatorcontrib><creatorcontrib>Rockey, Don C</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tillmann, Hans L</au><au>Suzuki, Ayako</au><au>Merz, Michael</au><au>Hermann, Richard</au><au>Rockey, Don C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT)</atitle><jtitle>PloS one</jtitle><date>2022-09-29</date><risdate>2022</risdate><volume>17</volume><issue>9</issue><spage>e0271304</spage><pages>e0271304-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We hypothesized that a drug's clinical signature (or phenotype) of liver injury can be assessed and used to quantitatively develop a computer-assisted DILI causality assessment-tool (DILI-CAT). Therefore, we evaluated drug-specific DILI-phenotypes for amoxicillin-clavulanate (AMX/CLA), cefazolin, cyproterone, and Polygonum multiflorum using data from published case series, to develop DILI-CAT scores for each drug. Drug specific phenotypes were made up of the following three clinical features: (1) latency, (2) R-value, and (3) AST/ALT ratio. A point allocation system was developed with points allocated depending on the variance from the norm (or "core") for the 3 variables in published datasets. The four drugs had significantly different phenotypes based on latency, R-value, and AST/ALT ratio. The median cyproterone latency was 150 days versus < 43 days for the other three drugs (median: 26 for AMX/CLA, 20 for cefazolin, and 20 for Polygonum multiflorum; p<0.001). The R-value for the four drugs was also significantly different among drugs (cyproterone [median 12.4] and Polygonum multiflorum [median 10.9]) from AMX/CLA [median 1.44] and cefazolin [median 1.57; p<0.001]). DILI-CAT scores effectively separated cyproterone and Polygonum multiflorum from AMX/CLA and cefazolin, respectively (p<0.001). As expected, because of phenotypic overlap, AMX/CLA and cefazolin could not be well differentiated. DILI-CAT is a data-driven, diagnostic tool built to define drug-specific phenotypes for DILI adjudication. The data provide proof of principle that a drug-specific, data-driven causality assessment tool can be developed for different drugs and raise the possibility that such a process could enhance causality assessment methods.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0271304</doi><tpages>e0271304</tpages><orcidid>https://orcid.org/0000-0003-1401-2208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-09, Vol.17 (9), p.e0271304 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2719396982 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adverse and side effects Amoxicillin Analysis Aquatic plants Biology and Life Sciences Causality Cefazolin Computer-aided medical diagnosis Diagnosis Drugs Genotype & phenotype Latency Liver Liver diseases Medical diagnosis Medicine and Health Sciences Methods Normal distribution Phenotype Phenotypes Physical Sciences Polygonum multiflorum Research and Analysis Methods Variables |
title | A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20quantitative%20computer-assisted%20drug-induced%20liver%20injury%20causality%20assessment%20tool%20(DILI-CAT)&rft.jtitle=PloS%20one&rft.au=Tillmann,%20Hans%20L&rft.date=2022-09-29&rft.volume=17&rft.issue=9&rft.spage=e0271304&rft.pages=e0271304-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0271304&rft_dat=%3Cgale_plos_%3EA720202563%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719396982&rft_id=info:pmid/&rft_galeid=A720202563&rft_doaj_id=oai_doaj_org_article_548948ce8b004c42a7b62caad4263eed&rfr_iscdi=true |