Modulating myoblast differentiation with RNA-based controllers
Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devic...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-09, Vol.17 (9), p.e0275298 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e0275298 |
container_title | PloS one |
container_volume | 17 |
creator | Dykstra, Peter B Rando, Thomas A Smolke, Christina D |
description | Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research. |
doi_str_mv | 10.1371/journal.pone.0275298 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2718612990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A719867571</galeid><doaj_id>oai_doaj_org_article_e728123df10d4433af605164449df44a</doaj_id><sourcerecordid>A719867571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e96b92a3d98ea8e542acc05729a41892e355d8a3ad8a93d5a0b064274952b4503</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YWLtu_2BsgcHYLpzp29ZNIZR9BLoVuo9bcWzJiYJipZK9tv9-8uKWePRiCCQhPeeVzjlvlr3EaI5pgT9sfB9acPOdb80ckYITWT7KjrGkJBcE0ccH-6PsWYwbhDgthXiaHVGBhWBcHGenX73uHXS2Xc22t75yELuZtk1jgmk7my58O7u23Xp2-W2RVxCNntW-7YJ3zoT4PHvSgIvmxbieZD8_ffxx9iU_v_i8PFuc57WQpMuNFJUkQLUsDZSGMwJ1jXhBJDBcSmIo57oECmmSVHNAFRKMFExyUjGO6En2eq-7cz6qMfWoSIFLgYmUA7HcE9rDRu2C3UK4VR6s-nvgw0pB6GztjDIFKTGhusFIM0YpNAJxLBhjUjeMQdI6HV_rq63RdapEADcRnd60dq1W_reSHDOBWRJ4NwoEf9Wb2KmtjbVxDlrj-_HflMpSJvTNP-jD2Y3UClICtm18erceRNWiwLIUBS9wouYPUGlos7Wpa6ax6XwS8H4SMHTW3HQr6GNUy--X_89e_Jqybw_YtQHXraN3_eCmOAXZHqyDjzGY5r7IGKnB5nfVUIPN1WjzFPbqsEH3QXe-pn8AcFr1-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718612990</pqid></control><display><type>article</type><title>Modulating myoblast differentiation with RNA-based controllers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dykstra, Peter B ; Rando, Thomas A ; Smolke, Christina D</creator><contributor>Preiss, Thomas</contributor><creatorcontrib>Dykstra, Peter B ; Rando, Thomas A ; Smolke, Christina D ; Preiss, Thomas</creatorcontrib><description>Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0275298</identifier><identifier>PMID: 36166456</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Apoptosis ; Biology and Life Sciences ; Catalytic RNA ; Cell differentiation ; Cell Differentiation - genetics ; Cell fate ; Cell proliferation ; Cell therapy ; Controllers ; Decisions ; Design ; Devices ; Differentiation ; Dosage and administration ; Fluorescence ; Gene expression ; Genetic engineering ; Health aspects ; Janus kinase ; Ligands ; Lymphocytes ; Lymphocytes T ; Methods ; Muscle Development - genetics ; Muscles ; Musculoskeletal system ; Myoblasts ; Myoblasts - metabolism ; Progenitor cells ; Protein expression ; Proteins ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; RNA - genetics ; RNA - metabolism ; RNA, Catalytic - metabolism ; Sensors ; Stem cells ; Switches ; Synthetic biology ; Theophylline ; Theophylline - metabolism ; Theophylline - pharmacology ; Tissue engineering ; Transplantation ; Transplants & implants</subject><ispartof>PloS one, 2022-09, Vol.17 (9), p.e0275298</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Dykstra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Dykstra et al 2022 Dykstra et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e96b92a3d98ea8e542acc05729a41892e355d8a3ad8a93d5a0b064274952b4503</citedby><cites>FETCH-LOGICAL-c692t-e96b92a3d98ea8e542acc05729a41892e355d8a3ad8a93d5a0b064274952b4503</cites><orcidid>0000-0002-5449-8495 ; 0000-0002-2626-7104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36166456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Preiss, Thomas</contributor><creatorcontrib>Dykstra, Peter B</creatorcontrib><creatorcontrib>Rando, Thomas A</creatorcontrib><creatorcontrib>Smolke, Christina D</creatorcontrib><title>Modulating myoblast differentiation with RNA-based controllers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research.</description><subject>Analysis</subject><subject>Apoptosis</subject><subject>Biology and Life Sciences</subject><subject>Catalytic RNA</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Cell proliferation</subject><subject>Cell therapy</subject><subject>Controllers</subject><subject>Decisions</subject><subject>Design</subject><subject>Devices</subject><subject>Differentiation</subject><subject>Dosage and administration</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Health aspects</subject><subject>Janus kinase</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Methods</subject><subject>Muscle Development - genetics</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myoblasts - metabolism</subject><subject>Progenitor cells</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>RNA, Catalytic - metabolism</subject><subject>Sensors</subject><subject>Stem cells</subject><subject>Switches</subject><subject>Synthetic biology</subject><subject>Theophylline</subject><subject>Theophylline - metabolism</subject><subject>Theophylline - pharmacology</subject><subject>Tissue engineering</subject><subject>Transplantation</subject><subject>Transplants & implants</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YWLtu_2BsgcHYLpzp29ZNIZR9BLoVuo9bcWzJiYJipZK9tv9-8uKWePRiCCQhPeeVzjlvlr3EaI5pgT9sfB9acPOdb80ckYITWT7KjrGkJBcE0ccH-6PsWYwbhDgthXiaHVGBhWBcHGenX73uHXS2Xc22t75yELuZtk1jgmk7my58O7u23Xp2-W2RVxCNntW-7YJ3zoT4PHvSgIvmxbieZD8_ffxx9iU_v_i8PFuc57WQpMuNFJUkQLUsDZSGMwJ1jXhBJDBcSmIo57oECmmSVHNAFRKMFExyUjGO6En2eq-7cz6qMfWoSIFLgYmUA7HcE9rDRu2C3UK4VR6s-nvgw0pB6GztjDIFKTGhusFIM0YpNAJxLBhjUjeMQdI6HV_rq63RdapEADcRnd60dq1W_reSHDOBWRJ4NwoEf9Wb2KmtjbVxDlrj-_HflMpSJvTNP-jD2Y3UClICtm18erceRNWiwLIUBS9wouYPUGlos7Wpa6ax6XwS8H4SMHTW3HQr6GNUy--X_89e_Jqybw_YtQHXraN3_eCmOAXZHqyDjzGY5r7IGKnB5nfVUIPN1WjzFPbqsEH3QXe-pn8AcFr1-g</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Dykstra, Peter B</creator><creator>Rando, Thomas A</creator><creator>Smolke, Christina D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5449-8495</orcidid><orcidid>https://orcid.org/0000-0002-2626-7104</orcidid></search><sort><creationdate>20220927</creationdate><title>Modulating myoblast differentiation with RNA-based controllers</title><author>Dykstra, Peter B ; Rando, Thomas A ; Smolke, Christina D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e96b92a3d98ea8e542acc05729a41892e355d8a3ad8a93d5a0b064274952b4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Apoptosis</topic><topic>Biology and Life Sciences</topic><topic>Catalytic RNA</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Cell proliferation</topic><topic>Cell therapy</topic><topic>Controllers</topic><topic>Decisions</topic><topic>Design</topic><topic>Devices</topic><topic>Differentiation</topic><topic>Dosage and administration</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Health aspects</topic><topic>Janus kinase</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Methods</topic><topic>Muscle Development - genetics</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myoblasts - metabolism</topic><topic>Progenitor cells</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>RNA, Catalytic - metabolism</topic><topic>Sensors</topic><topic>Stem cells</topic><topic>Switches</topic><topic>Synthetic biology</topic><topic>Theophylline</topic><topic>Theophylline - metabolism</topic><topic>Theophylline - pharmacology</topic><topic>Tissue engineering</topic><topic>Transplantation</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dykstra, Peter B</creatorcontrib><creatorcontrib>Rando, Thomas A</creatorcontrib><creatorcontrib>Smolke, Christina D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dykstra, Peter B</au><au>Rando, Thomas A</au><au>Smolke, Christina D</au><au>Preiss, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating myoblast differentiation with RNA-based controllers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-09-27</date><risdate>2022</risdate><volume>17</volume><issue>9</issue><spage>e0275298</spage><pages>e0275298-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36166456</pmid><doi>10.1371/journal.pone.0275298</doi><tpages>e0275298</tpages><orcidid>https://orcid.org/0000-0002-5449-8495</orcidid><orcidid>https://orcid.org/0000-0002-2626-7104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-09, Vol.17 (9), p.e0275298 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2718612990 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Apoptosis Biology and Life Sciences Catalytic RNA Cell differentiation Cell Differentiation - genetics Cell fate Cell proliferation Cell therapy Controllers Decisions Design Devices Differentiation Dosage and administration Fluorescence Gene expression Genetic engineering Health aspects Janus kinase Ligands Lymphocytes Lymphocytes T Methods Muscle Development - genetics Muscles Musculoskeletal system Myoblasts Myoblasts - metabolism Progenitor cells Protein expression Proteins Research and Analysis Methods Ribonucleic acid RNA RNA - genetics RNA - metabolism RNA, Catalytic - metabolism Sensors Stem cells Switches Synthetic biology Theophylline Theophylline - metabolism Theophylline - pharmacology Tissue engineering Transplantation Transplants & implants |
title | Modulating myoblast differentiation with RNA-based controllers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20myoblast%20differentiation%20with%20RNA-based%20controllers&rft.jtitle=PloS%20one&rft.au=Dykstra,%20Peter%20B&rft.date=2022-09-27&rft.volume=17&rft.issue=9&rft.spage=e0275298&rft.pages=e0275298-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0275298&rft_dat=%3Cgale_plos_%3EA719867571%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718612990&rft_id=info:pmid/36166456&rft_galeid=A719867571&rft_doaj_id=oai_doaj_org_article_e728123df10d4433af605164449df44a&rfr_iscdi=true |