Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation

This study aimed to provide volumetric choroidal readings regarding sex, origin, and eye side from healthy cynomolgus monkey eyes as a reference database using optical coherence tomography (OCT) imaging. A machine learning (ML) algorithm was used to extract the choroid from the volumetric OCT data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-09, Vol.17 (9), p.e0275050-e0275050
Hauptverfasser: Maloca, Peter M, Valmaggia, Philippe, Hartmann, Theresa, Juedes, Marlene, Hasler, Pascal W, Scholl, Hendrik P. N, Denk, Nora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0275050
container_issue 9
container_start_page e0275050
container_title PloS one
container_volume 17
creator Maloca, Peter M
Valmaggia, Philippe
Hartmann, Theresa
Juedes, Marlene
Hasler, Pascal W
Scholl, Hendrik P. N
Denk, Nora
description This study aimed to provide volumetric choroidal readings regarding sex, origin, and eye side from healthy cynomolgus monkey eyes as a reference database using optical coherence tomography (OCT) imaging. A machine learning (ML) algorithm was used to extract the choroid from the volumetric OCT data. Classical computer vision methods were then applied to automatically identify the deepest location in the foveolar depression. The choroidal thickness was determined from this reference point. A total of 374 eyes of 203 cynomolgus macaques from Asian and Mauritius origin were included in the analysis. The overall subfoveolar mean choroidal volume in zone 1, in the region of the central bouquet, was 0.156 mm.sup.3 (range, 0.131-0.193 mm.sup.3). For the central choroid volume, the coefficient of variation (CV) was found of 6.3%, indicating relatively little variation. Our results show, based on analyses of variance, that monkey origin (Asian or Mauritius) does not influence choroid volumes. Sex had a significant influence on choroidal volumes in the superior-inferior axis (p [less than or equal to] 0.01), but not in the fovea centralis. A homogeneous foveolar choroidal architecture was also observed.
doi_str_mv 10.1371/journal.pone.0275050
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2717291410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A719311347</galeid><doaj_id>oai_doaj_org_article_ae357612961c499cb7810565383e25c8</doaj_id><sourcerecordid>A719311347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-58a41cfbfbb3608d5f14fcfe5ff7aa5d39fe118c217936c743f5409b43476cc13</originalsourceid><addsrcrecordid>eNqNk92K1DAUx4so7rr6BoIBQfRixqRp0vZGWBY_BhYW_NjbkKYnbdY0GZN2ce58AF_A1_NJzDhVtrIXkouEk1_-J-fPOVn2mOA1oSV5eeWn4KRdb72DNc5Lhhm-kx2TmuYrnmN698b5KHsQ4xXGjFac38-OKCdFXVXkOPt-6e00wBiMQnFqtAHbIpl0d9FE5DVSO-cHb7sposG7z7D7-e1HRKr3wZsWtRDMNbRIBz-gfteEFBuk6o0DZEEGZ1yH_HY0SlqkfA8BnAI0JskuyG2_QxG6AdwoR-Pdw-yeljbCo3k_yT69ef3x7N3q_OLt5uz0fKU4r8cVq2RBlG5001COq5ZpUmilgWldSslaWmsgpFI5KWvKVVlQzQpcNwUtSq4UoSfZk4Pu1vooZiOjyEtS5jUpCE7E5kC0Xl6JbTCDDDvhpRG_Az50QoZUlQUhgbKSk7zmRBV1rZqyIpjxZDWFnKkqab2as03NAK1K1QZpF6LLG2d60flrUTPMOWVJ4PksEPyXCeIoBhMVWCsd-Onwb14XvOAJffoPent1M9XJVIBx2qe8ai8qTsvUNIQkpxK1voVKq4XBqNR12qT44sGLxYPEjPB17OQUo9h8eP__7MXlkn12g-1B2rGPqW33LROXYHEAVfAxBtB_TSZY7IfmjxtiPzRiHhr6C32SC9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717291410</pqid></control><display><type>article</type><title>Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Maloca, Peter M ; Valmaggia, Philippe ; Hartmann, Theresa ; Juedes, Marlene ; Hasler, Pascal W ; Scholl, Hendrik P. N ; Denk, Nora</creator><creatorcontrib>Maloca, Peter M ; Valmaggia, Philippe ; Hartmann, Theresa ; Juedes, Marlene ; Hasler, Pascal W ; Scholl, Hendrik P. N ; Denk, Nora</creatorcontrib><description>This study aimed to provide volumetric choroidal readings regarding sex, origin, and eye side from healthy cynomolgus monkey eyes as a reference database using optical coherence tomography (OCT) imaging. A machine learning (ML) algorithm was used to extract the choroid from the volumetric OCT data. Classical computer vision methods were then applied to automatically identify the deepest location in the foveolar depression. The choroidal thickness was determined from this reference point. A total of 374 eyes of 203 cynomolgus macaques from Asian and Mauritius origin were included in the analysis. The overall subfoveolar mean choroidal volume in zone 1, in the region of the central bouquet, was 0.156 mm.sup.3 (range, 0.131-0.193 mm.sup.3). For the central choroid volume, the coefficient of variation (CV) was found of 6.3%, indicating relatively little variation. Our results show, based on analyses of variance, that monkey origin (Asian or Mauritius) does not influence choroid volumes. Sex had a significant influence on choroidal volumes in the superior-inferior axis (p [less than or equal to] 0.01), but not in the fovea centralis. A homogeneous foveolar choroidal architecture was also observed.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0275050</identifier><identifier>PMID: 36149881</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Coefficient of variation ; Coherence (Optics) ; Computer and Information Sciences ; Computer vision ; Correlation analysis ; Deep learning ; Eye ; Fovea ; Health aspects ; Image segmentation ; Laboratories ; Learning algorithms ; Machine learning ; Medicine and Health Sciences ; Methods ; Monkeys ; Morphology ; Optical Coherence Tomography ; Optical tomography ; Physical Sciences ; Product development ; Research and Analysis Methods ; Retina ; Semantics ; Sex ; Tomography ; Variance analysis</subject><ispartof>PloS one, 2022-09, Vol.17 (9), p.e0275050-e0275050</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Maloca et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Maloca et al 2022 Maloca et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-58a41cfbfbb3608d5f14fcfe5ff7aa5d39fe118c217936c743f5409b43476cc13</citedby><cites>FETCH-LOGICAL-c669t-58a41cfbfbb3608d5f14fcfe5ff7aa5d39fe118c217936c743f5409b43476cc13</cites><orcidid>0000-0002-4794-5859 ; 0000-0002-7312-0316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506635/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Maloca, Peter M</creatorcontrib><creatorcontrib>Valmaggia, Philippe</creatorcontrib><creatorcontrib>Hartmann, Theresa</creatorcontrib><creatorcontrib>Juedes, Marlene</creatorcontrib><creatorcontrib>Hasler, Pascal W</creatorcontrib><creatorcontrib>Scholl, Hendrik P. N</creatorcontrib><creatorcontrib>Denk, Nora</creatorcontrib><title>Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation</title><title>PloS one</title><description>This study aimed to provide volumetric choroidal readings regarding sex, origin, and eye side from healthy cynomolgus monkey eyes as a reference database using optical coherence tomography (OCT) imaging. A machine learning (ML) algorithm was used to extract the choroid from the volumetric OCT data. Classical computer vision methods were then applied to automatically identify the deepest location in the foveolar depression. The choroidal thickness was determined from this reference point. A total of 374 eyes of 203 cynomolgus macaques from Asian and Mauritius origin were included in the analysis. The overall subfoveolar mean choroidal volume in zone 1, in the region of the central bouquet, was 0.156 mm.sup.3 (range, 0.131-0.193 mm.sup.3). For the central choroid volume, the coefficient of variation (CV) was found of 6.3%, indicating relatively little variation. Our results show, based on analyses of variance, that monkey origin (Asian or Mauritius) does not influence choroid volumes. Sex had a significant influence on choroidal volumes in the superior-inferior axis (p [less than or equal to] 0.01), but not in the fovea centralis. A homogeneous foveolar choroidal architecture was also observed.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Coefficient of variation</subject><subject>Coherence (Optics)</subject><subject>Computer and Information Sciences</subject><subject>Computer vision</subject><subject>Correlation analysis</subject><subject>Deep learning</subject><subject>Eye</subject><subject>Fovea</subject><subject>Health aspects</subject><subject>Image segmentation</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Monkeys</subject><subject>Morphology</subject><subject>Optical Coherence Tomography</subject><subject>Optical tomography</subject><subject>Physical Sciences</subject><subject>Product development</subject><subject>Research and Analysis Methods</subject><subject>Retina</subject><subject>Semantics</subject><subject>Sex</subject><subject>Tomography</subject><subject>Variance analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk92K1DAUx4so7rr6BoIBQfRixqRp0vZGWBY_BhYW_NjbkKYnbdY0GZN2ce58AF_A1_NJzDhVtrIXkouEk1_-J-fPOVn2mOA1oSV5eeWn4KRdb72DNc5Lhhm-kx2TmuYrnmN698b5KHsQ4xXGjFac38-OKCdFXVXkOPt-6e00wBiMQnFqtAHbIpl0d9FE5DVSO-cHb7sposG7z7D7-e1HRKr3wZsWtRDMNbRIBz-gfteEFBuk6o0DZEEGZ1yH_HY0SlqkfA8BnAI0JskuyG2_QxG6AdwoR-Pdw-yeljbCo3k_yT69ef3x7N3q_OLt5uz0fKU4r8cVq2RBlG5001COq5ZpUmilgWldSslaWmsgpFI5KWvKVVlQzQpcNwUtSq4UoSfZk4Pu1vooZiOjyEtS5jUpCE7E5kC0Xl6JbTCDDDvhpRG_Az50QoZUlQUhgbKSk7zmRBV1rZqyIpjxZDWFnKkqab2as03NAK1K1QZpF6LLG2d60flrUTPMOWVJ4PksEPyXCeIoBhMVWCsd-Onwb14XvOAJffoPent1M9XJVIBx2qe8ai8qTsvUNIQkpxK1voVKq4XBqNR12qT44sGLxYPEjPB17OQUo9h8eP__7MXlkn12g-1B2rGPqW33LROXYHEAVfAxBtB_TSZY7IfmjxtiPzRiHhr6C32SC9Q</recordid><startdate>20220923</startdate><enddate>20220923</enddate><creator>Maloca, Peter M</creator><creator>Valmaggia, Philippe</creator><creator>Hartmann, Theresa</creator><creator>Juedes, Marlene</creator><creator>Hasler, Pascal W</creator><creator>Scholl, Hendrik P. N</creator><creator>Denk, Nora</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4794-5859</orcidid><orcidid>https://orcid.org/0000-0002-7312-0316</orcidid></search><sort><creationdate>20220923</creationdate><title>Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation</title><author>Maloca, Peter M ; Valmaggia, Philippe ; Hartmann, Theresa ; Juedes, Marlene ; Hasler, Pascal W ; Scholl, Hendrik P. N ; Denk, Nora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-58a41cfbfbb3608d5f14fcfe5ff7aa5d39fe118c217936c743f5409b43476cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Coefficient of variation</topic><topic>Coherence (Optics)</topic><topic>Computer and Information Sciences</topic><topic>Computer vision</topic><topic>Correlation analysis</topic><topic>Deep learning</topic><topic>Eye</topic><topic>Fovea</topic><topic>Health aspects</topic><topic>Image segmentation</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Monkeys</topic><topic>Morphology</topic><topic>Optical Coherence Tomography</topic><topic>Optical tomography</topic><topic>Physical Sciences</topic><topic>Product development</topic><topic>Research and Analysis Methods</topic><topic>Retina</topic><topic>Semantics</topic><topic>Sex</topic><topic>Tomography</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maloca, Peter M</creatorcontrib><creatorcontrib>Valmaggia, Philippe</creatorcontrib><creatorcontrib>Hartmann, Theresa</creatorcontrib><creatorcontrib>Juedes, Marlene</creatorcontrib><creatorcontrib>Hasler, Pascal W</creatorcontrib><creatorcontrib>Scholl, Hendrik P. N</creatorcontrib><creatorcontrib>Denk, Nora</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maloca, Peter M</au><au>Valmaggia, Philippe</au><au>Hartmann, Theresa</au><au>Juedes, Marlene</au><au>Hasler, Pascal W</au><au>Scholl, Hendrik P. N</au><au>Denk, Nora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation</atitle><jtitle>PloS one</jtitle><date>2022-09-23</date><risdate>2022</risdate><volume>17</volume><issue>9</issue><spage>e0275050</spage><epage>e0275050</epage><pages>e0275050-e0275050</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study aimed to provide volumetric choroidal readings regarding sex, origin, and eye side from healthy cynomolgus monkey eyes as a reference database using optical coherence tomography (OCT) imaging. A machine learning (ML) algorithm was used to extract the choroid from the volumetric OCT data. Classical computer vision methods were then applied to automatically identify the deepest location in the foveolar depression. The choroidal thickness was determined from this reference point. A total of 374 eyes of 203 cynomolgus macaques from Asian and Mauritius origin were included in the analysis. The overall subfoveolar mean choroidal volume in zone 1, in the region of the central bouquet, was 0.156 mm.sup.3 (range, 0.131-0.193 mm.sup.3). For the central choroid volume, the coefficient of variation (CV) was found of 6.3%, indicating relatively little variation. Our results show, based on analyses of variance, that monkey origin (Asian or Mauritius) does not influence choroid volumes. Sex had a significant influence on choroidal volumes in the superior-inferior axis (p [less than or equal to] 0.01), but not in the fovea centralis. A homogeneous foveolar choroidal architecture was also observed.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36149881</pmid><doi>10.1371/journal.pone.0275050</doi><tpages>e0275050</tpages><orcidid>https://orcid.org/0000-0002-4794-5859</orcidid><orcidid>https://orcid.org/0000-0002-7312-0316</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-09, Vol.17 (9), p.e0275050-e0275050
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2717291410
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Biology and Life Sciences
Coefficient of variation
Coherence (Optics)
Computer and Information Sciences
Computer vision
Correlation analysis
Deep learning
Eye
Fovea
Health aspects
Image segmentation
Laboratories
Learning algorithms
Machine learning
Medicine and Health Sciences
Methods
Monkeys
Morphology
Optical Coherence Tomography
Optical tomography
Physical Sciences
Product development
Research and Analysis Methods
Retina
Semantics
Sex
Tomography
Variance analysis
title Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volumetric%20subfield%20analysis%20of%20cynomolgus%20monkey%E2%80%99s%20choroid%20derived%20from%20hybrid%20machine%20learning%20optical%20coherence%20tomography%20segmentation&rft.jtitle=PloS%20one&rft.au=Maloca,%20Peter%20M&rft.date=2022-09-23&rft.volume=17&rft.issue=9&rft.spage=e0275050&rft.epage=e0275050&rft.pages=e0275050-e0275050&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0275050&rft_dat=%3Cgale_plos_%3EA719311347%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717291410&rft_id=info:pmid/36149881&rft_galeid=A719311347&rft_doaj_id=oai_doaj_org_article_ae357612961c499cb7810565383e25c8&rfr_iscdi=true