Using machine learning to determine the shared and unique risk factors for marijuana use among child-welfare versus community adolescents
This study used machine learning (ML) to test an empirically derived set of risk factors for marijuana use. Models were built separately for child welfare (CW) and non-CW adolescents in order to compare the variables selected as important features/risk factors. Data were from a Time 4 (Mage = 18.22)...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-09, Vol.17 (9), p.e0274998 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!