Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles
In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to releas...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2022-08, Vol.18 (8), p.e1010754-e1010754 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010754 |
---|---|
container_issue | 8 |
container_start_page | e1010754 |
container_title | PLoS pathogens |
container_volume | 18 |
creator | Francis, Ashwanth C Cereseto, Anna Singh, Parmit K Shi, Jiong Poeschla, Eric Engelman, Alan N Aiken, Christopher Melikyan, Gregory B |
description | In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components. |
doi_str_mv | 10.1371/journal.ppat.1010754 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2715144631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715937374</galeid><doaj_id>oai_doaj_org_article_166d03dde2f742408db1c08163d5768e</doaj_id><sourcerecordid>A715937374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-e13290da2f4c0a24f61183427bc3d6708094086dbcfb36f4e8697c237d3d72ca3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEou3CN0AQiQscsnhix04ulaqKtiutAPE8Wo4fwausHeKkKnx6nN206qJekA-2x7_5z8OTJC8ALQEzeLfxY-9Eu-w6MSwBAWIFeZQcQ1HgjGFGHt87HyUnIWwQIoCBPk2OcFEVQBk9Tn6svRSt_SMG610qnErN6OR0Cak3qYv2a72z68uLT9kgmkarVIouWJV2vR-0jaR16dXqewZpJ_rBylaHZ8kTI9qgn8_7Ivl28f7r-VW2_ni5Oj9bZ5JSGDINOK-QErkhEomcGApQYpKzWmJFGSpRRVBJVS1NjakhuqQVkzlmCiuWS4EXyau9btf6wOeeBJ4zKIAQiiESqz2hvNjwrrdb0f_mXli-M_i-4XPSHChVCCulc8NIHgOrGiQqgWJVMFrqqHU6RxvrrVZSu6EX7YHo4YuzP3njr3lFclrtknkzC_T-16jDwLc2SN22wmk_TnkjAFyRGHKRvP4Hfbi6mWpELMA642NcOYnys0hVePr-SC0foOJSemuld9rYaD9weHvgEJlB3wyNGEPgqy-f_4P9cMiSPSt7H0KvzV3vAPFprG-L5NNY83mso9vL-32_c7qdY_wXfCvw9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715144631</pqid></control><display><type>article</type><title>Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Francis, Ashwanth C ; Cereseto, Anna ; Singh, Parmit K ; Shi, Jiong ; Poeschla, Eric ; Engelman, Alan N ; Aiken, Christopher ; Melikyan, Gregory B</creator><contributor>Ross, Susan R.</contributor><creatorcontrib>Francis, Ashwanth C ; Cereseto, Anna ; Singh, Parmit K ; Shi, Jiong ; Poeschla, Eric ; Engelman, Alan N ; Aiken, Christopher ; Melikyan, Gregory B ; Ross, Susan R.</creatorcontrib><description>In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010754</identifier><identifier>PMID: 35951676</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Active Transport, Cell Nucleus ; Biology and Life Sciences ; Capsid - metabolism ; Capsid protein ; Capsid Proteins - genetics ; Capsid Proteins - metabolism ; Capsids ; Chromatin ; Cytoplasm ; Experiments ; Fluorescent indicators ; Genomes ; HIV ; HIV Infections ; HIV-1 - genetics ; Human immunodeficiency virus ; Humans ; Infections ; Integrase ; Labeling ; Localization ; Markers ; Medicine and Health Sciences ; Nuclear pores ; Nuclear transport ; Nuclei (cytology) ; Physiological aspects ; Proteins ; Retention ; Ribonucleoproteins ; Structure ; Uncoating ; Viral proteins ; Virion - metabolism ; Virions ; Virus Integration ; Virus Replication ; Virus Uncoating ; Viruses</subject><ispartof>PLoS pathogens, 2022-08, Vol.18 (8), p.e1010754-e1010754</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Francis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Francis et al 2022 Francis et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-e13290da2f4c0a24f61183427bc3d6708094086dbcfb36f4e8697c237d3d72ca3</citedby><cites>FETCH-LOGICAL-c661t-e13290da2f4c0a24f61183427bc3d6708094086dbcfb36f4e8697c237d3d72ca3</cites><orcidid>0000-0002-8663-2038 ; 0000-0001-5385-3013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426931/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426931/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35951676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ross, Susan R.</contributor><creatorcontrib>Francis, Ashwanth C</creatorcontrib><creatorcontrib>Cereseto, Anna</creatorcontrib><creatorcontrib>Singh, Parmit K</creatorcontrib><creatorcontrib>Shi, Jiong</creatorcontrib><creatorcontrib>Poeschla, Eric</creatorcontrib><creatorcontrib>Engelman, Alan N</creatorcontrib><creatorcontrib>Aiken, Christopher</creatorcontrib><creatorcontrib>Melikyan, Gregory B</creatorcontrib><title>Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components.</description><subject>Active Transport, Cell Nucleus</subject><subject>Biology and Life Sciences</subject><subject>Capsid - metabolism</subject><subject>Capsid protein</subject><subject>Capsid Proteins - genetics</subject><subject>Capsid Proteins - metabolism</subject><subject>Capsids</subject><subject>Chromatin</subject><subject>Cytoplasm</subject><subject>Experiments</subject><subject>Fluorescent indicators</subject><subject>Genomes</subject><subject>HIV</subject><subject>HIV Infections</subject><subject>HIV-1 - genetics</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Infections</subject><subject>Integrase</subject><subject>Labeling</subject><subject>Localization</subject><subject>Markers</subject><subject>Medicine and Health Sciences</subject><subject>Nuclear pores</subject><subject>Nuclear transport</subject><subject>Nuclei (cytology)</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Retention</subject><subject>Ribonucleoproteins</subject><subject>Structure</subject><subject>Uncoating</subject><subject>Viral proteins</subject><subject>Virion - metabolism</subject><subject>Virions</subject><subject>Virus Integration</subject><subject>Virus Replication</subject><subject>Virus Uncoating</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEou3CN0AQiQscsnhix04ulaqKtiutAPE8Wo4fwausHeKkKnx6nN206qJekA-2x7_5z8OTJC8ALQEzeLfxY-9Eu-w6MSwBAWIFeZQcQ1HgjGFGHt87HyUnIWwQIoCBPk2OcFEVQBk9Tn6svRSt_SMG610qnErN6OR0Cak3qYv2a72z68uLT9kgmkarVIouWJV2vR-0jaR16dXqewZpJ_rBylaHZ8kTI9qgn8_7Ivl28f7r-VW2_ni5Oj9bZ5JSGDINOK-QErkhEomcGApQYpKzWmJFGSpRRVBJVS1NjakhuqQVkzlmCiuWS4EXyau9btf6wOeeBJ4zKIAQiiESqz2hvNjwrrdb0f_mXli-M_i-4XPSHChVCCulc8NIHgOrGiQqgWJVMFrqqHU6RxvrrVZSu6EX7YHo4YuzP3njr3lFclrtknkzC_T-16jDwLc2SN22wmk_TnkjAFyRGHKRvP4Hfbi6mWpELMA642NcOYnys0hVePr-SC0foOJSemuld9rYaD9weHvgEJlB3wyNGEPgqy-f_4P9cMiSPSt7H0KvzV3vAPFprG-L5NNY83mso9vL-32_c7qdY_wXfCvw9w</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Francis, Ashwanth C</creator><creator>Cereseto, Anna</creator><creator>Singh, Parmit K</creator><creator>Shi, Jiong</creator><creator>Poeschla, Eric</creator><creator>Engelman, Alan N</creator><creator>Aiken, Christopher</creator><creator>Melikyan, Gregory B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8663-2038</orcidid><orcidid>https://orcid.org/0000-0001-5385-3013</orcidid></search><sort><creationdate>20220801</creationdate><title>Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles</title><author>Francis, Ashwanth C ; Cereseto, Anna ; Singh, Parmit K ; Shi, Jiong ; Poeschla, Eric ; Engelman, Alan N ; Aiken, Christopher ; Melikyan, Gregory B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-e13290da2f4c0a24f61183427bc3d6708094086dbcfb36f4e8697c237d3d72ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Biology and Life Sciences</topic><topic>Capsid - metabolism</topic><topic>Capsid protein</topic><topic>Capsid Proteins - genetics</topic><topic>Capsid Proteins - metabolism</topic><topic>Capsids</topic><topic>Chromatin</topic><topic>Cytoplasm</topic><topic>Experiments</topic><topic>Fluorescent indicators</topic><topic>Genomes</topic><topic>HIV</topic><topic>HIV Infections</topic><topic>HIV-1 - genetics</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Infections</topic><topic>Integrase</topic><topic>Labeling</topic><topic>Localization</topic><topic>Markers</topic><topic>Medicine and Health Sciences</topic><topic>Nuclear pores</topic><topic>Nuclear transport</topic><topic>Nuclei (cytology)</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Retention</topic><topic>Ribonucleoproteins</topic><topic>Structure</topic><topic>Uncoating</topic><topic>Viral proteins</topic><topic>Virion - metabolism</topic><topic>Virions</topic><topic>Virus Integration</topic><topic>Virus Replication</topic><topic>Virus Uncoating</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis, Ashwanth C</creatorcontrib><creatorcontrib>Cereseto, Anna</creatorcontrib><creatorcontrib>Singh, Parmit K</creatorcontrib><creatorcontrib>Shi, Jiong</creatorcontrib><creatorcontrib>Poeschla, Eric</creatorcontrib><creatorcontrib>Engelman, Alan N</creatorcontrib><creatorcontrib>Aiken, Christopher</creatorcontrib><creatorcontrib>Melikyan, Gregory B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis, Ashwanth C</au><au>Cereseto, Anna</au><au>Singh, Parmit K</au><au>Shi, Jiong</au><au>Poeschla, Eric</au><au>Engelman, Alan N</au><au>Aiken, Christopher</au><au>Melikyan, Gregory B</au><au>Ross, Susan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>18</volume><issue>8</issue><spage>e1010754</spage><epage>e1010754</epage><pages>e1010754-e1010754</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35951676</pmid><doi>10.1371/journal.ppat.1010754</doi><tpages>e1010754</tpages><orcidid>https://orcid.org/0000-0002-8663-2038</orcidid><orcidid>https://orcid.org/0000-0001-5385-3013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2022-08, Vol.18 (8), p.e1010754-e1010754 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2715144631 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central |
subjects | Active Transport, Cell Nucleus Biology and Life Sciences Capsid - metabolism Capsid protein Capsid Proteins - genetics Capsid Proteins - metabolism Capsids Chromatin Cytoplasm Experiments Fluorescent indicators Genomes HIV HIV Infections HIV-1 - genetics Human immunodeficiency virus Humans Infections Integrase Labeling Localization Markers Medicine and Health Sciences Nuclear pores Nuclear transport Nuclei (cytology) Physiological aspects Proteins Retention Ribonucleoproteins Structure Uncoating Viral proteins Virion - metabolism Virions Virus Integration Virus Replication Virus Uncoating Viruses |
title | Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20and%20functions%20of%20native%20and%20eGFP-tagged%20capsid%20proteins%20in%20HIV-1%20particles&rft.jtitle=PLoS%20pathogens&rft.au=Francis,%20Ashwanth%20C&rft.date=2022-08-01&rft.volume=18&rft.issue=8&rft.spage=e1010754&rft.epage=e1010754&rft.pages=e1010754-e1010754&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010754&rft_dat=%3Cgale_plos_%3EA715937374%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715144631&rft_id=info:pmid/35951676&rft_galeid=A715937374&rft_doaj_id=oai_doaj_org_article_166d03dde2f742408db1c08163d5768e&rfr_iscdi=true |