Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling
The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large sca...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-08, Vol.18 (8), p.e1010438-e1010438 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010438 |
---|---|
container_issue | 8 |
container_start_page | e1010438 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Batzilla, Alina Lu, Junyan Kivioja, Jarno Putzker, Kerstin Lewis, Joe Zenz, Thorsten Huber, Wolfgang |
description | The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology. |
doi_str_mv | 10.1371/journal.pcbi.1010438 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2715142348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715936859</galeid><doaj_id>oai_doaj_org_article_195db4ad367c435b910eb09f4fb511e9</doaj_id><sourcerecordid>A715936859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-dd506027285543c926b37aac0658d6dd2f9ac020c801278a5ea951f6605903443</originalsourceid><addsrcrecordid>eNqVkluL1DAUx4so7kW_gWDBl_WhY9IkbfMiLIuuA4uCl-eQJqedDJ2kJukw--1Nd6o4si-Sh5PL7_zPJSfLXmG0wqTG77Zu8lYOq1G1ZoURRpQ0T7JzzBgpasKap3_tz7KLELYIpS2vnmdnhHFOGSLn2WFtO_De2D6P0875IoygTGdUrqRV4HMNI1gNVhkIedx4N_Wb3NgIvZdxdoNDvjd7l2s_9bmHMDobIJchyPuQS6sfHorRuwjG5sl2Zkh-L7JnnRwCvFzsZfbj44fvN5-Kuy-365vru0JVpImF1gxVqKzLhjFKFC-rltRSKlSxRldalx1PhxKpBuGybiQDyRnuqgoxjgil5DJ7fdQdBxfE0rQgyhozTEtCm0Ssj4R2citGb3bS3wsnjXi4cL4X0kejBhCYM91SqUlVK0pYyzGCFvGOdi3DGHjSer9Em9odaAU2ejmciJ6-WLMRvdsLTklKmSSBq0XAu58ThCh2JigYBmnBTXPeieJNw-ZYb_5BH69uoXqZCjC2cymumkXFdaI4qY5aq0eotDTsjHIW0qfBqcPbE4fERDjEXk4hiPW3r__Bfj5l6ZFV3oXgofvTO4zEPPe_ixTz3Itl7skvjyz1dg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715142348</pqid></control><display><type>article</type><title>Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Batzilla, Alina ; Lu, Junyan ; Kivioja, Jarno ; Putzker, Kerstin ; Lewis, Joe ; Zenz, Thorsten ; Huber, Wolfgang</creator><creatorcontrib>Batzilla, Alina ; Lu, Junyan ; Kivioja, Jarno ; Putzker, Kerstin ; Lewis, Joe ; Zenz, Thorsten ; Huber, Wolfgang</creatorcontrib><description>The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010438</identifier><identifier>PMID: 35994503</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Acute myeloid leukemia ; Affinity ; Analysis ; B-cell receptor ; Biology and Life Sciences ; Breast cancer ; Cancer ; Cancer therapies ; Chemical compounds ; Chronic lymphocytic leukemia ; CRISPR ; Datasets ; Dose-response relationship (Biochemistry) ; Drugs ; Epidermal growth factor ; ErbB-2 protein ; Kinases ; Leukemia ; Lymphocytes B ; Mathematical models ; Medicine and Health Sciences ; Methods ; Mutation ; Perturbation ; Phenotypes ; Precision medicine ; Protein kinase ; Protein kinases ; Proteins ; Subgroups ; Tumor cell lines ; Tumors</subject><ispartof>PLoS computational biology, 2022-08, Vol.18 (8), p.e1010438-e1010438</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Batzilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Batzilla et al 2022 Batzilla et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-dd506027285543c926b37aac0658d6dd2f9ac020c801278a5ea951f6605903443</citedby><cites>FETCH-LOGICAL-c638t-dd506027285543c926b37aac0658d6dd2f9ac020c801278a5ea951f6605903443</cites><orcidid>0000-0002-9211-0746 ; 0000-0001-8375-5908 ; 0000-0003-3893-8355 ; 0000-0002-0474-2218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436053/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436053/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Batzilla, Alina</creatorcontrib><creatorcontrib>Lu, Junyan</creatorcontrib><creatorcontrib>Kivioja, Jarno</creatorcontrib><creatorcontrib>Putzker, Kerstin</creatorcontrib><creatorcontrib>Lewis, Joe</creatorcontrib><creatorcontrib>Zenz, Thorsten</creatorcontrib><creatorcontrib>Huber, Wolfgang</creatorcontrib><title>Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling</title><title>PLoS computational biology</title><description>The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology.</description><subject>Acute myeloid leukemia</subject><subject>Affinity</subject><subject>Analysis</subject><subject>B-cell receptor</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Chemical compounds</subject><subject>Chronic lymphocytic leukemia</subject><subject>CRISPR</subject><subject>Datasets</subject><subject>Dose-response relationship (Biochemistry)</subject><subject>Drugs</subject><subject>Epidermal growth factor</subject><subject>ErbB-2 protein</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Lymphocytes B</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mutation</subject><subject>Perturbation</subject><subject>Phenotypes</subject><subject>Precision medicine</subject><subject>Protein kinase</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Subgroups</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluL1DAUx4so7kW_gWDBl_WhY9IkbfMiLIuuA4uCl-eQJqedDJ2kJukw--1Nd6o4si-Sh5PL7_zPJSfLXmG0wqTG77Zu8lYOq1G1ZoURRpQ0T7JzzBgpasKap3_tz7KLELYIpS2vnmdnhHFOGSLn2WFtO_De2D6P0875IoygTGdUrqRV4HMNI1gNVhkIedx4N_Wb3NgIvZdxdoNDvjd7l2s_9bmHMDobIJchyPuQS6sfHorRuwjG5sl2Zkh-L7JnnRwCvFzsZfbj44fvN5-Kuy-365vru0JVpImF1gxVqKzLhjFKFC-rltRSKlSxRldalx1PhxKpBuGybiQDyRnuqgoxjgil5DJ7fdQdBxfE0rQgyhozTEtCm0Ssj4R2citGb3bS3wsnjXi4cL4X0kejBhCYM91SqUlVK0pYyzGCFvGOdi3DGHjSer9Em9odaAU2ejmciJ6-WLMRvdsLTklKmSSBq0XAu58ThCh2JigYBmnBTXPeieJNw-ZYb_5BH69uoXqZCjC2cymumkXFdaI4qY5aq0eotDTsjHIW0qfBqcPbE4fERDjEXk4hiPW3r__Bfj5l6ZFV3oXgofvTO4zEPPe_ixTz3Itl7skvjyz1dg</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Batzilla, Alina</creator><creator>Lu, Junyan</creator><creator>Kivioja, Jarno</creator><creator>Putzker, Kerstin</creator><creator>Lewis, Joe</creator><creator>Zenz, Thorsten</creator><creator>Huber, Wolfgang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9211-0746</orcidid><orcidid>https://orcid.org/0000-0001-8375-5908</orcidid><orcidid>https://orcid.org/0000-0003-3893-8355</orcidid><orcidid>https://orcid.org/0000-0002-0474-2218</orcidid></search><sort><creationdate>20220822</creationdate><title>Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling</title><author>Batzilla, Alina ; Lu, Junyan ; Kivioja, Jarno ; Putzker, Kerstin ; Lewis, Joe ; Zenz, Thorsten ; Huber, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-dd506027285543c926b37aac0658d6dd2f9ac020c801278a5ea951f6605903443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acute myeloid leukemia</topic><topic>Affinity</topic><topic>Analysis</topic><topic>B-cell receptor</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Chemical compounds</topic><topic>Chronic lymphocytic leukemia</topic><topic>CRISPR</topic><topic>Datasets</topic><topic>Dose-response relationship (Biochemistry)</topic><topic>Drugs</topic><topic>Epidermal growth factor</topic><topic>ErbB-2 protein</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Lymphocytes B</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mutation</topic><topic>Perturbation</topic><topic>Phenotypes</topic><topic>Precision medicine</topic><topic>Protein kinase</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Subgroups</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batzilla, Alina</creatorcontrib><creatorcontrib>Lu, Junyan</creatorcontrib><creatorcontrib>Kivioja, Jarno</creatorcontrib><creatorcontrib>Putzker, Kerstin</creatorcontrib><creatorcontrib>Lewis, Joe</creatorcontrib><creatorcontrib>Zenz, Thorsten</creatorcontrib><creatorcontrib>Huber, Wolfgang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batzilla, Alina</au><au>Lu, Junyan</au><au>Kivioja, Jarno</au><au>Putzker, Kerstin</au><au>Lewis, Joe</au><au>Zenz, Thorsten</au><au>Huber, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling</atitle><jtitle>PLoS computational biology</jtitle><date>2022-08-22</date><risdate>2022</risdate><volume>18</volume><issue>8</issue><spage>e1010438</spage><epage>e1010438</epage><pages>e1010438-e1010438</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35994503</pmid><doi>10.1371/journal.pcbi.1010438</doi><tpages>e1010438</tpages><orcidid>https://orcid.org/0000-0002-9211-0746</orcidid><orcidid>https://orcid.org/0000-0001-8375-5908</orcidid><orcidid>https://orcid.org/0000-0003-3893-8355</orcidid><orcidid>https://orcid.org/0000-0002-0474-2218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-08, Vol.18 (8), p.e1010438-e1010438 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2715142348 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Acute myeloid leukemia Affinity Analysis B-cell receptor Biology and Life Sciences Breast cancer Cancer Cancer therapies Chemical compounds Chronic lymphocytic leukemia CRISPR Datasets Dose-response relationship (Biochemistry) Drugs Epidermal growth factor ErbB-2 protein Kinases Leukemia Lymphocytes B Mathematical models Medicine and Health Sciences Methods Mutation Perturbation Phenotypes Precision medicine Protein kinase Protein kinases Proteins Subgroups Tumor cell lines Tumors |
title | Inferring tumor-specific cancer dependencies through integrating ex vivo drug response assays and drug-protein profiling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20tumor-specific%20cancer%20dependencies%20through%20integrating%20ex%20vivo%20drug%20response%20assays%20and%20drug-protein%20profiling&rft.jtitle=PLoS%20computational%20biology&rft.au=Batzilla,%20Alina&rft.date=2022-08-22&rft.volume=18&rft.issue=8&rft.spage=e1010438&rft.epage=e1010438&rft.pages=e1010438-e1010438&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010438&rft_dat=%3Cgale_plos_%3EA715936859%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715142348&rft_id=info:pmid/35994503&rft_galeid=A715936859&rft_doaj_id=oai_doaj_org_article_195db4ad367c435b910eb09f4fb511e9&rfr_iscdi=true |