Cross-fitted instrument: A blueprint for one-sample Mendelian randomization

Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined 'Cross-Fitted Instrument' (CFI)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-08, Vol.18 (8), p.e1010268
Hauptverfasser: Denault, William R P, Bohlin, Jon, Page, Christian M, Burgess, Stephen, Jugessur, Astanand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e1010268
container_title PLoS computational biology
container_volume 18
creator Denault, William R P
Bohlin, Jon
Page, Christian M
Burgess, Stephen
Jugessur, Astanand
description Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined 'Cross-Fitted Instrument' (CFI). CFI splits the data at random and estimates the impact of the instrument on the exposure in each partition. These estimates are then used to perform an IVR on each partition. We adapt CFI to the Mendelian randomization (MR) setting and term this adaptation 'Cross-Fitting for Mendelian Randomization' (CFMR). We show that, even when using weak instruments, CFMR is, at worst, biased towards the null, which makes it a conservative one-sample MR approach. In particular, CFMR remains conservative even when the two samples used to perform the MR analysis completely overlap, whereas current state-of-the-art approaches (e.g., MR RAPS) display substantial bias in this setting. Another major advantage of CFMR lies in its use of all of the available data to select genetic instruments, which maximizes statistical power, as opposed to traditional two-sample MR where only part of the data is used to select the instrument. Consequently, CFMR is able to enhance statistical power in consortia-led meta-analyses by enabling a conservative one-sample MR to be performed in each cohort prior to a meta-analysis of the results across all the cohorts. In addition, CFMR enables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important in meta-analyses where the participating cohorts may have different ethnicities. To our knowledge, none of the current MR approaches can account for such heterogeneity. Finally, CFMR enables the application of MR to exposures that are either rare or difficult to measure, which would normally preclude their analysis in the regular two-sample MR setting.
doi_str_mv 10.1371/journal.pcbi.1010268
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2715142297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715937159</galeid><doaj_id>oai_doaj_org_article_8dec1b68ea6a49a3bf7defda9d97dbec</doaj_id><sourcerecordid>A715937159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-2bf8194aba23c7f254895fdd224ced14ed10f01bcf447839ca3eaa51740167993</originalsourceid><addsrcrecordid>eNqVktmO0zAUhiMEYobCGyCIxA1cpHhJ4ngukKqKpWIAieXaOvFSXCV2sR0EPD3utB2miBsUObac7yz_yV8UDzGaY8rw842fgoNhvpW9nWOEEWm7W8U5bhpaMdp0t2-cz4p7MW4Qykfe3i3OaIsoI3V3XrxdBh9jZWxKWpXWxRSmUbt0US7Kfpj0NliXSuND6Z2uIozbQZfvtFN6sODKAE750f6CZL27X9wxMET94LDPii-vXn5evqkuP7xeLReXlWwblirSmw7zGnogVDJDmrrjjVGKkFpqheu8kEG4l6auWUe5BKoBGsxqhFvGOZ0Vj_d5t4OP4jCHKAjDDa4J4SwTqz2hPGxE1jBC-Ck8WHF14cNaQEhWDlp0Skvct52GFmoOtDdMaaOAK85Ur2XO9eJQbepHrWQeToDhJOnpF2e_irX_LnjdEkbxn3ZlsDFZJ5wPIDDqGiI4I4Rm4umhRPDfJh2TGG2UehjAaT_tlCHWMdIhktEnf6H_1j_fU2vIEq0zPncm86P0aGX-k8bm-0UO4PTqNSuenQRkJukfaQ1TjGL16eN_sO9P2fqoPdssaHM9N4zEzsbH9sXOxuJg4xz26ObMr4OOvqW_AZIA7ng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715142297</pqid></control><display><type>article</type><title>Cross-fitted instrument: A blueprint for one-sample Mendelian randomization</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Denault, William R P ; Bohlin, Jon ; Page, Christian M ; Burgess, Stephen ; Jugessur, Astanand</creator><creatorcontrib>Denault, William R P ; Bohlin, Jon ; Page, Christian M ; Burgess, Stephen ; Jugessur, Astanand</creatorcontrib><description>Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined 'Cross-Fitted Instrument' (CFI). CFI splits the data at random and estimates the impact of the instrument on the exposure in each partition. These estimates are then used to perform an IVR on each partition. We adapt CFI to the Mendelian randomization (MR) setting and term this adaptation 'Cross-Fitting for Mendelian Randomization' (CFMR). We show that, even when using weak instruments, CFMR is, at worst, biased towards the null, which makes it a conservative one-sample MR approach. In particular, CFMR remains conservative even when the two samples used to perform the MR analysis completely overlap, whereas current state-of-the-art approaches (e.g., MR RAPS) display substantial bias in this setting. Another major advantage of CFMR lies in its use of all of the available data to select genetic instruments, which maximizes statistical power, as opposed to traditional two-sample MR where only part of the data is used to select the instrument. Consequently, CFMR is able to enhance statistical power in consortia-led meta-analyses by enabling a conservative one-sample MR to be performed in each cohort prior to a meta-analysis of the results across all the cohorts. In addition, CFMR enables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important in meta-analyses where the participating cohorts may have different ethnicities. To our knowledge, none of the current MR approaches can account for such heterogeneity. Finally, CFMR enables the application of MR to exposures that are either rare or difficult to measure, which would normally preclude their analysis in the regular two-sample MR setting.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010268</identifier><identifier>PMID: 36037248</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bias ; Biology and Life Sciences ; Causal inference ; Causality ; Computational biology ; Estimates ; Genetic research ; Genomes ; Heterogeneity ; Humans ; Medical research ; Mendelian Randomization Analysis - methods ; Methods ; People and Places ; Physical Sciences ; Randomization ; Research and Analysis Methods ; Statistical analysis ; Statistics</subject><ispartof>PLoS computational biology, 2022-08, Vol.18 (8), p.e1010268</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Denault et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2022 Denault et al 2022 Denault et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-2bf8194aba23c7f254895fdd224ced14ed10f01bcf447839ca3eaa51740167993</citedby><cites>FETCH-LOGICAL-c657t-2bf8194aba23c7f254895fdd224ced14ed10f01bcf447839ca3eaa51740167993</cites><orcidid>0000-0001-5365-8760 ; 0000-0002-1897-3666 ; 0000-0002-0992-1311 ; 0000-0002-9690-3890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462731/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462731/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,26544,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36037248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Denault, William R P</creatorcontrib><creatorcontrib>Bohlin, Jon</creatorcontrib><creatorcontrib>Page, Christian M</creatorcontrib><creatorcontrib>Burgess, Stephen</creatorcontrib><creatorcontrib>Jugessur, Astanand</creatorcontrib><title>Cross-fitted instrument: A blueprint for one-sample Mendelian randomization</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined 'Cross-Fitted Instrument' (CFI). CFI splits the data at random and estimates the impact of the instrument on the exposure in each partition. These estimates are then used to perform an IVR on each partition. We adapt CFI to the Mendelian randomization (MR) setting and term this adaptation 'Cross-Fitting for Mendelian Randomization' (CFMR). We show that, even when using weak instruments, CFMR is, at worst, biased towards the null, which makes it a conservative one-sample MR approach. In particular, CFMR remains conservative even when the two samples used to perform the MR analysis completely overlap, whereas current state-of-the-art approaches (e.g., MR RAPS) display substantial bias in this setting. Another major advantage of CFMR lies in its use of all of the available data to select genetic instruments, which maximizes statistical power, as opposed to traditional two-sample MR where only part of the data is used to select the instrument. Consequently, CFMR is able to enhance statistical power in consortia-led meta-analyses by enabling a conservative one-sample MR to be performed in each cohort prior to a meta-analysis of the results across all the cohorts. In addition, CFMR enables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important in meta-analyses where the participating cohorts may have different ethnicities. To our knowledge, none of the current MR approaches can account for such heterogeneity. Finally, CFMR enables the application of MR to exposures that are either rare or difficult to measure, which would normally preclude their analysis in the regular two-sample MR setting.</description><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Causal inference</subject><subject>Causality</subject><subject>Computational biology</subject><subject>Estimates</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Medical research</subject><subject>Mendelian Randomization Analysis - methods</subject><subject>Methods</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Randomization</subject><subject>Research and Analysis Methods</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNqVktmO0zAUhiMEYobCGyCIxA1cpHhJ4ngukKqKpWIAieXaOvFSXCV2sR0EPD3utB2miBsUObac7yz_yV8UDzGaY8rw842fgoNhvpW9nWOEEWm7W8U5bhpaMdp0t2-cz4p7MW4Qykfe3i3OaIsoI3V3XrxdBh9jZWxKWpXWxRSmUbt0US7Kfpj0NliXSuND6Z2uIozbQZfvtFN6sODKAE750f6CZL27X9wxMET94LDPii-vXn5evqkuP7xeLReXlWwblirSmw7zGnogVDJDmrrjjVGKkFpqheu8kEG4l6auWUe5BKoBGsxqhFvGOZ0Vj_d5t4OP4jCHKAjDDa4J4SwTqz2hPGxE1jBC-Ck8WHF14cNaQEhWDlp0Skvct52GFmoOtDdMaaOAK85Ur2XO9eJQbepHrWQeToDhJOnpF2e_irX_LnjdEkbxn3ZlsDFZJ5wPIDDqGiI4I4Rm4umhRPDfJh2TGG2UehjAaT_tlCHWMdIhktEnf6H_1j_fU2vIEq0zPncm86P0aGX-k8bm-0UO4PTqNSuenQRkJukfaQ1TjGL16eN_sO9P2fqoPdssaHM9N4zEzsbH9sXOxuJg4xz26ObMr4OOvqW_AZIA7ng</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Denault, William R P</creator><creator>Bohlin, Jon</creator><creator>Page, Christian M</creator><creator>Burgess, Stephen</creator><creator>Jugessur, Astanand</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5365-8760</orcidid><orcidid>https://orcid.org/0000-0002-1897-3666</orcidid><orcidid>https://orcid.org/0000-0002-0992-1311</orcidid><orcidid>https://orcid.org/0000-0002-9690-3890</orcidid></search><sort><creationdate>20220801</creationdate><title>Cross-fitted instrument: A blueprint for one-sample Mendelian randomization</title><author>Denault, William R P ; Bohlin, Jon ; Page, Christian M ; Burgess, Stephen ; Jugessur, Astanand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-2bf8194aba23c7f254895fdd224ced14ed10f01bcf447839ca3eaa51740167993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Causal inference</topic><topic>Causality</topic><topic>Computational biology</topic><topic>Estimates</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Medical research</topic><topic>Mendelian Randomization Analysis - methods</topic><topic>Methods</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Randomization</topic><topic>Research and Analysis Methods</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denault, William R P</creatorcontrib><creatorcontrib>Bohlin, Jon</creatorcontrib><creatorcontrib>Page, Christian M</creatorcontrib><creatorcontrib>Burgess, Stephen</creatorcontrib><creatorcontrib>Jugessur, Astanand</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denault, William R P</au><au>Bohlin, Jon</au><au>Page, Christian M</au><au>Burgess, Stephen</au><au>Jugessur, Astanand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-fitted instrument: A blueprint for one-sample Mendelian randomization</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>18</volume><issue>8</issue><spage>e1010268</spage><pages>e1010268-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined 'Cross-Fitted Instrument' (CFI). CFI splits the data at random and estimates the impact of the instrument on the exposure in each partition. These estimates are then used to perform an IVR on each partition. We adapt CFI to the Mendelian randomization (MR) setting and term this adaptation 'Cross-Fitting for Mendelian Randomization' (CFMR). We show that, even when using weak instruments, CFMR is, at worst, biased towards the null, which makes it a conservative one-sample MR approach. In particular, CFMR remains conservative even when the two samples used to perform the MR analysis completely overlap, whereas current state-of-the-art approaches (e.g., MR RAPS) display substantial bias in this setting. Another major advantage of CFMR lies in its use of all of the available data to select genetic instruments, which maximizes statistical power, as opposed to traditional two-sample MR where only part of the data is used to select the instrument. Consequently, CFMR is able to enhance statistical power in consortia-led meta-analyses by enabling a conservative one-sample MR to be performed in each cohort prior to a meta-analysis of the results across all the cohorts. In addition, CFMR enables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important in meta-analyses where the participating cohorts may have different ethnicities. To our knowledge, none of the current MR approaches can account for such heterogeneity. Finally, CFMR enables the application of MR to exposures that are either rare or difficult to measure, which would normally preclude their analysis in the regular two-sample MR setting.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36037248</pmid><doi>10.1371/journal.pcbi.1010268</doi><tpages>e1010268</tpages><orcidid>https://orcid.org/0000-0001-5365-8760</orcidid><orcidid>https://orcid.org/0000-0002-1897-3666</orcidid><orcidid>https://orcid.org/0000-0002-0992-1311</orcidid><orcidid>https://orcid.org/0000-0002-9690-3890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-08, Vol.18 (8), p.e1010268
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2715142297
source MEDLINE; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Bias
Biology and Life Sciences
Causal inference
Causality
Computational biology
Estimates
Genetic research
Genomes
Heterogeneity
Humans
Medical research
Mendelian Randomization Analysis - methods
Methods
People and Places
Physical Sciences
Randomization
Research and Analysis Methods
Statistical analysis
Statistics
title Cross-fitted instrument: A blueprint for one-sample Mendelian randomization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-fitted%20instrument:%20A%20blueprint%20for%20one-sample%20Mendelian%20randomization&rft.jtitle=PLoS%20computational%20biology&rft.au=Denault,%20William%20R%20P&rft.date=2022-08-01&rft.volume=18&rft.issue=8&rft.spage=e1010268&rft.pages=e1010268-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010268&rft_dat=%3Cgale_plos_%3EA715937159%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715142297&rft_id=info:pmid/36037248&rft_galeid=A715937159&rft_doaj_id=oai_doaj_org_article_8dec1b68ea6a49a3bf7defda9d97dbec&rfr_iscdi=true