Robust and efficient COVID-19 detection techniques: A machine learning approach

The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-09, Vol.17 (9), p.e0274538-e0274538
Hauptverfasser: Hasan, Md. Mahadi, Murtaz, Saba Binte, Islam, Muhammad Usama, Sadeq, Muhammad Jafar, Uddin, Jasim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0274538
container_issue 9
container_start_page e0274538
container_title PloS one
container_volume 17
creator Hasan, Md. Mahadi
Murtaz, Saba Binte
Islam, Muhammad Usama
Sadeq, Muhammad Jafar
Uddin, Jasim
description The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.
doi_str_mv 10.1371/journal.pone.0274538
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2714859825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A717809704</galeid><doaj_id>oai_doaj_org_article_a943a964c5894ec3a531ba11a996abb2</doaj_id><sourcerecordid>A717809704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-9907b9dadca525ef848eed690114f6c7af7651e09cd2ae9b500028010a76cf433</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DQQLgujDjEmaJo0PwjD-G1gYWHVfw216O5Olk4xJK_rtTZ0qW9kHyUPCzS_n5h5Olj2lZEkLSV_f-CE46JZH73BJmORlUd3Lzqkq2EIwUty_dT7LHsV4Q0hChHiYnRWCEqkkPc-2V74eYp-Da3JsW2ssuj5fb6837xZU5Q32aHrrXZ72vbPfBoxv8lV-ALO3DvMOITjrdjkcj8Gn4uPsQQtdxCfTfpF9_fD-y_rT4nL7cbNeXS6MEKpfKEVkrRpoDJSsxLbiFWIjFKGUt8JIaKUoKRJlGgao6pIQwipCCUhhWl4UF9mzk-6x81FPXkTNJOVVqSpWJmJzIhoPN_oY7AHCT-3B6t8FH3YaQm9NhxoUL0AJbspKcTQFlAWtgVJQSkBds6T1duo21AdsTPIoQDcTnd84u9c7_10rLiUTIgm8nASCHz3s9cFGg10HDv1w-rcouWDjZM__Qe-ebqJ2kAawrvWprxlF9UpSWRElCU_U8g4qrQYP1qTgtDbVZw9ezR4kpscf_Q6GGPXm89X_s9vrOfviFrtH6Pp99N0wRivOQX4CTfAxBmz_mkyJHnP_xw095l5PuS9-AW9w8cE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714859825</pqid></control><display><type>article</type><title>Robust and efficient COVID-19 detection techniques: A machine learning approach</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hasan, Md. Mahadi ; Murtaz, Saba Binte ; Islam, Muhammad Usama ; Sadeq, Muhammad Jafar ; Uddin, Jasim</creator><creatorcontrib>Hasan, Md. Mahadi ; Murtaz, Saba Binte ; Islam, Muhammad Usama ; Sadeq, Muhammad Jafar ; Uddin, Jasim</creatorcontrib><description>The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0274538</identifier><identifier>PMID: 36107971</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Artificial neural networks ; Biology and life sciences ; Computer and Information Sciences ; Coronaviruses ; COVID-19 ; Drug development ; Evaluation ; Gene clusters ; Genetic structure ; Genomes ; Global economy ; Learning algorithms ; Life cycles ; Machine learning ; Medical tests ; Medicine and health sciences ; MicroRNAs ; miRNA ; Model accuracy ; Neural networks ; Nucleotide sequence ; Oligonucleotides ; Pandemics ; Physical Sciences ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Sampling techniques ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases ; Viruses</subject><ispartof>PloS one, 2022-09, Vol.17 (9), p.e0274538-e0274538</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Hasan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Hasan et al 2022 Hasan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-9907b9dadca525ef848eed690114f6c7af7651e09cd2ae9b500028010a76cf433</citedby><cites>FETCH-LOGICAL-c669t-9907b9dadca525ef848eed690114f6c7af7651e09cd2ae9b500028010a76cf433</cites><orcidid>0000-0002-0735-9038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477266/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477266/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Hasan, Md. Mahadi</creatorcontrib><creatorcontrib>Murtaz, Saba Binte</creatorcontrib><creatorcontrib>Islam, Muhammad Usama</creatorcontrib><creatorcontrib>Sadeq, Muhammad Jafar</creatorcontrib><creatorcontrib>Uddin, Jasim</creatorcontrib><title>Robust and efficient COVID-19 detection techniques: A machine learning approach</title><title>PloS one</title><description>The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.</description><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biology and life sciences</subject><subject>Computer and Information Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Drug development</subject><subject>Evaluation</subject><subject>Gene clusters</subject><subject>Genetic structure</subject><subject>Genomes</subject><subject>Global economy</subject><subject>Learning algorithms</subject><subject>Life cycles</subject><subject>Machine learning</subject><subject>Medical tests</subject><subject>Medicine and health sciences</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Nucleotide sequence</subject><subject>Oligonucleotides</subject><subject>Pandemics</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sampling techniques</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DQQLgujDjEmaJo0PwjD-G1gYWHVfw216O5Olk4xJK_rtTZ0qW9kHyUPCzS_n5h5Olj2lZEkLSV_f-CE46JZH73BJmORlUd3Lzqkq2EIwUty_dT7LHsV4Q0hChHiYnRWCEqkkPc-2V74eYp-Da3JsW2ssuj5fb6837xZU5Q32aHrrXZ72vbPfBoxv8lV-ALO3DvMOITjrdjkcj8Gn4uPsQQtdxCfTfpF9_fD-y_rT4nL7cbNeXS6MEKpfKEVkrRpoDJSsxLbiFWIjFKGUt8JIaKUoKRJlGgao6pIQwipCCUhhWl4UF9mzk-6x81FPXkTNJOVVqSpWJmJzIhoPN_oY7AHCT-3B6t8FH3YaQm9NhxoUL0AJbspKcTQFlAWtgVJQSkBds6T1duo21AdsTPIoQDcTnd84u9c7_10rLiUTIgm8nASCHz3s9cFGg10HDv1w-rcouWDjZM__Qe-ebqJ2kAawrvWprxlF9UpSWRElCU_U8g4qrQYP1qTgtDbVZw9ezR4kpscf_Q6GGPXm89X_s9vrOfviFrtH6Pp99N0wRivOQX4CTfAxBmz_mkyJHnP_xw095l5PuS9-AW9w8cE</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Hasan, Md. Mahadi</creator><creator>Murtaz, Saba Binte</creator><creator>Islam, Muhammad Usama</creator><creator>Sadeq, Muhammad Jafar</creator><creator>Uddin, Jasim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0735-9038</orcidid></search><sort><creationdate>20220915</creationdate><title>Robust and efficient COVID-19 detection techniques: A machine learning approach</title><author>Hasan, Md. Mahadi ; Murtaz, Saba Binte ; Islam, Muhammad Usama ; Sadeq, Muhammad Jafar ; Uddin, Jasim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-9907b9dadca525ef848eed690114f6c7af7651e09cd2ae9b500028010a76cf433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biology and life sciences</topic><topic>Computer and Information Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Drug development</topic><topic>Evaluation</topic><topic>Gene clusters</topic><topic>Genetic structure</topic><topic>Genomes</topic><topic>Global economy</topic><topic>Learning algorithms</topic><topic>Life cycles</topic><topic>Machine learning</topic><topic>Medical tests</topic><topic>Medicine and health sciences</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Nucleotide sequence</topic><topic>Oligonucleotides</topic><topic>Pandemics</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sampling techniques</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Md. Mahadi</creatorcontrib><creatorcontrib>Murtaz, Saba Binte</creatorcontrib><creatorcontrib>Islam, Muhammad Usama</creatorcontrib><creatorcontrib>Sadeq, Muhammad Jafar</creatorcontrib><creatorcontrib>Uddin, Jasim</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Md. Mahadi</au><au>Murtaz, Saba Binte</au><au>Islam, Muhammad Usama</au><au>Sadeq, Muhammad Jafar</au><au>Uddin, Jasim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and efficient COVID-19 detection techniques: A machine learning approach</atitle><jtitle>PloS one</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>17</volume><issue>9</issue><spage>e0274538</spage><epage>e0274538</epage><pages>e0274538-e0274538</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36107971</pmid><doi>10.1371/journal.pone.0274538</doi><tpages>e0274538</tpages><orcidid>https://orcid.org/0000-0002-0735-9038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-09, Vol.17 (9), p.e0274538-e0274538
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2714859825
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Artificial neural networks
Biology and life sciences
Computer and Information Sciences
Coronaviruses
COVID-19
Drug development
Evaluation
Gene clusters
Genetic structure
Genomes
Global economy
Learning algorithms
Life cycles
Machine learning
Medical tests
Medicine and health sciences
MicroRNAs
miRNA
Model accuracy
Neural networks
Nucleotide sequence
Oligonucleotides
Pandemics
Physical Sciences
Research and Analysis Methods
Ribonucleic acid
RNA
Sampling techniques
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Viruses
title Robust and efficient COVID-19 detection techniques: A machine learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20efficient%20COVID-19%20detection%20techniques:%20A%20machine%20learning%20approach&rft.jtitle=PloS%20one&rft.au=Hasan,%20Md.%20Mahadi&rft.date=2022-09-15&rft.volume=17&rft.issue=9&rft.spage=e0274538&rft.epage=e0274538&rft.pages=e0274538-e0274538&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0274538&rft_dat=%3Cgale_plos_%3EA717809704%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714859825&rft_id=info:pmid/36107971&rft_galeid=A717809704&rft_doaj_id=oai_doaj_org_article_a943a964c5894ec3a531ba11a996abb2&rfr_iscdi=true