From crop specific to variety specific in crop modeling for the smart farm: A case study with blueberry

Facility cultivation has been evolved from greenhouses to smart farms using artificial intelligence (AI) that simulates big data to maximize production. However, the big data for AI in smart farm is not studied well; the effect of differences among varieties within a crop remains unclear. Therefore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-08, Vol.17 (8), p.e0273845-e0273845
Hauptverfasser: Han, Gyung Deok, Choi, Jeong Min, Choi, Inchan, Kim, Yoonha, Heo, Seong, Chung, Yong Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0273845
container_issue 8
container_start_page e0273845
container_title PloS one
container_volume 17
creator Han, Gyung Deok
Choi, Jeong Min
Choi, Inchan
Kim, Yoonha
Heo, Seong
Chung, Yong Suk
description Facility cultivation has been evolved from greenhouses to smart farms using artificial intelligence (AI) that simulates big data to maximize production. However, the big data for AI in smart farm is not studied well; the effect of differences among varieties within a crop remains unclear. Therefore, the response of two varieties of blueberry, ‘Suziblue’ and ‘Star’, to light was tested using SAPD meter in order to demonstrate the environmental responses could be different among varieties within the same species. The results showed that those two varieties had significant differences in SPAD values based on the leaf’s position and time, whereas ‘Star’ did not. This indicates that the effect of light depends on the variety, which implies that other traits and other crops may show similar differences. These results are based on a simple experiment. However, it is enough to elucidate that it is extremely important to characterize responses to the environment not only for each crop but also for each variety to collect data for smart farming to increase accuracy for modeling; consequently, to maximize the efficiency of these facilities.
doi_str_mv 10.1371/journal.pone.0273845
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2708225894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715527663</galeid><doaj_id>oai_doaj_org_article_86fb374c268f4617b4a7993cdd07359b</doaj_id><sourcerecordid>A715527663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-db01b61ed5727e5f9a79b975e74a54284ce5dc438e7fc4adc17b2d75040fad943</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A8GAIHqx60w-J14IS7G6UCj4dRsy-ZjNMjPZJpnq_nuz3VE70gvJRcLJk_ec95BTFM-rclkhVr3d-jEMslvu_GCWJWSoxuRBcVpxBBcUlujhnfNJ8STGbVkSVFP6uDhBtMQlr9Fp0V4E3wMV_A7EnVHOOgWSBzcyOJP2f2NuOEK916ZzQwusDyBtDIi9DAlYGfp3YAWUjDmURr0HP1zagKYbTWNC2D8tHlnZRfNs2s-Kbxcfvp5_WlxefVyfry4XilKeFropq4ZWRhMGmSGWS8YbzohhWBIMa6wM0Qqj2jCrsNSqYg3UjGQ7VmqO0Vnx4qi763wUU4-igKysIST1LbE-EtrLrdgFlw3shZdO3AZ8aEV25FRnRE1tgxhWkNYW05wK53I4UlqXDBHeZK33U7ax6Y1WZkhBdjPR-c3gNqL1N4LjrMlhFng9CQR_PZqYRO-iMl0nB-PHqW7CK4Qy-vIf9H53E9XKbMAN1ue86iAqVqwiBDJKD1rLe6i8tOmdyh_KuhyfPXgze5CZZH6mVo4xivWXz__PXn2fs6_usBsju7SJvhuT80Ocg_gI5l8YYzD2T5OrUhzm4Xc3xGEexDQP6Bc1Hftk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708225894</pqid></control><display><type>article</type><title>From crop specific to variety specific in crop modeling for the smart farm: A case study with blueberry</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Han, Gyung Deok ; Choi, Jeong Min ; Choi, Inchan ; Kim, Yoonha ; Heo, Seong ; Chung, Yong Suk</creator><creatorcontrib>Han, Gyung Deok ; Choi, Jeong Min ; Choi, Inchan ; Kim, Yoonha ; Heo, Seong ; Chung, Yong Suk</creatorcontrib><description>Facility cultivation has been evolved from greenhouses to smart farms using artificial intelligence (AI) that simulates big data to maximize production. However, the big data for AI in smart farm is not studied well; the effect of differences among varieties within a crop remains unclear. Therefore, the response of two varieties of blueberry, ‘Suziblue’ and ‘Star’, to light was tested using SAPD meter in order to demonstrate the environmental responses could be different among varieties within the same species. The results showed that those two varieties had significant differences in SPAD values based on the leaf’s position and time, whereas ‘Star’ did not. This indicates that the effect of light depends on the variety, which implies that other traits and other crops may show similar differences. These results are based on a simple experiment. However, it is enough to elucidate that it is extremely important to characterize responses to the environment not only for each crop but also for each variety to collect data for smart farming to increase accuracy for modeling; consequently, to maximize the efficiency of these facilities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0273845</identifier><identifier>PMID: 36040983</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Agricultural industry ; Agricultural production ; Artificial intelligence ; Big Data ; Biology and Life Sciences ; Blueberries ; Case reports ; Chlorophyll ; Chloroplasts ; Computer and Information Sciences ; Crops ; Cultivars ; Cultivation ; Data collection ; Digital agriculture ; Evaluation ; Farm buildings ; Farm management ; Farming ; Farms ; Fruit cultivation ; Innovations ; Leaves ; Light effects ; Model accuracy ; Modelling ; Photosynthesis ; Physical Sciences ; Statistical analysis ; Sun ; Vaccinium</subject><ispartof>PloS one, 2022-08, Vol.17 (8), p.e0273845-e0273845</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Han et al 2022 Han et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-db01b61ed5727e5f9a79b975e74a54284ce5dc438e7fc4adc17b2d75040fad943</citedby><cites>FETCH-LOGICAL-c669t-db01b61ed5727e5f9a79b975e74a54284ce5dc438e7fc4adc17b2d75040fad943</cites><orcidid>0000-0003-3121-7600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426892/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426892/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><creatorcontrib>Han, Gyung Deok</creatorcontrib><creatorcontrib>Choi, Jeong Min</creatorcontrib><creatorcontrib>Choi, Inchan</creatorcontrib><creatorcontrib>Kim, Yoonha</creatorcontrib><creatorcontrib>Heo, Seong</creatorcontrib><creatorcontrib>Chung, Yong Suk</creatorcontrib><title>From crop specific to variety specific in crop modeling for the smart farm: A case study with blueberry</title><title>PloS one</title><description>Facility cultivation has been evolved from greenhouses to smart farms using artificial intelligence (AI) that simulates big data to maximize production. However, the big data for AI in smart farm is not studied well; the effect of differences among varieties within a crop remains unclear. Therefore, the response of two varieties of blueberry, ‘Suziblue’ and ‘Star’, to light was tested using SAPD meter in order to demonstrate the environmental responses could be different among varieties within the same species. The results showed that those two varieties had significant differences in SPAD values based on the leaf’s position and time, whereas ‘Star’ did not. This indicates that the effect of light depends on the variety, which implies that other traits and other crops may show similar differences. These results are based on a simple experiment. However, it is enough to elucidate that it is extremely important to characterize responses to the environment not only for each crop but also for each variety to collect data for smart farming to increase accuracy for modeling; consequently, to maximize the efficiency of these facilities.</description><subject>Agricultural industry</subject><subject>Agricultural production</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Biology and Life Sciences</subject><subject>Blueberries</subject><subject>Case reports</subject><subject>Chlorophyll</subject><subject>Chloroplasts</subject><subject>Computer and Information Sciences</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Cultivation</subject><subject>Data collection</subject><subject>Digital agriculture</subject><subject>Evaluation</subject><subject>Farm buildings</subject><subject>Farm management</subject><subject>Farming</subject><subject>Farms</subject><subject>Fruit cultivation</subject><subject>Innovations</subject><subject>Leaves</subject><subject>Light effects</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Photosynthesis</subject><subject>Physical Sciences</subject><subject>Statistical analysis</subject><subject>Sun</subject><subject>Vaccinium</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A8GAIHqx60w-J14IS7G6UCj4dRsy-ZjNMjPZJpnq_nuz3VE70gvJRcLJk_ec95BTFM-rclkhVr3d-jEMslvu_GCWJWSoxuRBcVpxBBcUlujhnfNJ8STGbVkSVFP6uDhBtMQlr9Fp0V4E3wMV_A7EnVHOOgWSBzcyOJP2f2NuOEK916ZzQwusDyBtDIi9DAlYGfp3YAWUjDmURr0HP1zagKYbTWNC2D8tHlnZRfNs2s-Kbxcfvp5_WlxefVyfry4XilKeFropq4ZWRhMGmSGWS8YbzohhWBIMa6wM0Qqj2jCrsNSqYg3UjGQ7VmqO0Vnx4qi763wUU4-igKysIST1LbE-EtrLrdgFlw3shZdO3AZ8aEV25FRnRE1tgxhWkNYW05wK53I4UlqXDBHeZK33U7ax6Y1WZkhBdjPR-c3gNqL1N4LjrMlhFng9CQR_PZqYRO-iMl0nB-PHqW7CK4Qy-vIf9H53E9XKbMAN1ue86iAqVqwiBDJKD1rLe6i8tOmdyh_KuhyfPXgze5CZZH6mVo4xivWXz__PXn2fs6_usBsju7SJvhuT80Ocg_gI5l8YYzD2T5OrUhzm4Xc3xGEexDQP6Bc1Hftk</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Han, Gyung Deok</creator><creator>Choi, Jeong Min</creator><creator>Choi, Inchan</creator><creator>Kim, Yoonha</creator><creator>Heo, Seong</creator><creator>Chung, Yong Suk</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3121-7600</orcidid></search><sort><creationdate>20220830</creationdate><title>From crop specific to variety specific in crop modeling for the smart farm: A case study with blueberry</title><author>Han, Gyung Deok ; Choi, Jeong Min ; Choi, Inchan ; Kim, Yoonha ; Heo, Seong ; Chung, Yong Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-db01b61ed5727e5f9a79b975e74a54284ce5dc438e7fc4adc17b2d75040fad943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural industry</topic><topic>Agricultural production</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Biology and Life Sciences</topic><topic>Blueberries</topic><topic>Case reports</topic><topic>Chlorophyll</topic><topic>Chloroplasts</topic><topic>Computer and Information Sciences</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Cultivation</topic><topic>Data collection</topic><topic>Digital agriculture</topic><topic>Evaluation</topic><topic>Farm buildings</topic><topic>Farm management</topic><topic>Farming</topic><topic>Farms</topic><topic>Fruit cultivation</topic><topic>Innovations</topic><topic>Leaves</topic><topic>Light effects</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Photosynthesis</topic><topic>Physical Sciences</topic><topic>Statistical analysis</topic><topic>Sun</topic><topic>Vaccinium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Gyung Deok</creatorcontrib><creatorcontrib>Choi, Jeong Min</creatorcontrib><creatorcontrib>Choi, Inchan</creatorcontrib><creatorcontrib>Kim, Yoonha</creatorcontrib><creatorcontrib>Heo, Seong</creatorcontrib><creatorcontrib>Chung, Yong Suk</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Gyung Deok</au><au>Choi, Jeong Min</au><au>Choi, Inchan</au><au>Kim, Yoonha</au><au>Heo, Seong</au><au>Chung, Yong Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From crop specific to variety specific in crop modeling for the smart farm: A case study with blueberry</atitle><jtitle>PloS one</jtitle><date>2022-08-30</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e0273845</spage><epage>e0273845</epage><pages>e0273845-e0273845</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Facility cultivation has been evolved from greenhouses to smart farms using artificial intelligence (AI) that simulates big data to maximize production. However, the big data for AI in smart farm is not studied well; the effect of differences among varieties within a crop remains unclear. Therefore, the response of two varieties of blueberry, ‘Suziblue’ and ‘Star’, to light was tested using SAPD meter in order to demonstrate the environmental responses could be different among varieties within the same species. The results showed that those two varieties had significant differences in SPAD values based on the leaf’s position and time, whereas ‘Star’ did not. This indicates that the effect of light depends on the variety, which implies that other traits and other crops may show similar differences. These results are based on a simple experiment. However, it is enough to elucidate that it is extremely important to characterize responses to the environment not only for each crop but also for each variety to collect data for smart farming to increase accuracy for modeling; consequently, to maximize the efficiency of these facilities.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36040983</pmid><doi>10.1371/journal.pone.0273845</doi><tpages>e0273845</tpages><orcidid>https://orcid.org/0000-0003-3121-7600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-08, Vol.17 (8), p.e0273845-e0273845
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2708225894
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Agricultural industry
Agricultural production
Artificial intelligence
Big Data
Biology and Life Sciences
Blueberries
Case reports
Chlorophyll
Chloroplasts
Computer and Information Sciences
Crops
Cultivars
Cultivation
Data collection
Digital agriculture
Evaluation
Farm buildings
Farm management
Farming
Farms
Fruit cultivation
Innovations
Leaves
Light effects
Model accuracy
Modelling
Photosynthesis
Physical Sciences
Statistical analysis
Sun
Vaccinium
title From crop specific to variety specific in crop modeling for the smart farm: A case study with blueberry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20crop%20specific%20to%20variety%20specific%20in%20crop%20modeling%20for%20the%20smart%20farm:%20A%20case%20study%20with%20blueberry&rft.jtitle=PloS%20one&rft.au=Han,%20Gyung%20Deok&rft.date=2022-08-30&rft.volume=17&rft.issue=8&rft.spage=e0273845&rft.epage=e0273845&rft.pages=e0273845-e0273845&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0273845&rft_dat=%3Cgale_plos_%3EA715527663%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708225894&rft_id=info:pmid/36040983&rft_galeid=A715527663&rft_doaj_id=oai_doaj_org_article_86fb374c268f4617b4a7993cdd07359b&rfr_iscdi=true