X-ray directional dark-field imaging using Unified Modulated Pattern Analysis
X-ray directional dark-field imaging is a recent technique that can reveal a sample’s small-scale structural properties which are otherwise invisible in a conventional imaging system. In particular, directional dark-field can detect and quantify the orientation of anisotropic structures. Here, we pr...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-08, Vol.17 (8), p.e0273315-e0273315 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0273315 |
---|---|
container_issue | 8 |
container_start_page | e0273315 |
container_title | PloS one |
container_volume | 17 |
creator | Smith, Ronan De Marco, Fabio Broche, Ludovic Zdora, Marie-Christine Phillips, Nicholas W Boardman, Richard Thibault, Pierre |
description | X-ray directional dark-field imaging is a recent technique that can reveal a sample’s small-scale structural properties which are otherwise invisible in a conventional imaging system. In particular, directional dark-field can detect and quantify the orientation of anisotropic structures. Here, we present an algorithm that allows for the extraction of a directional dark-field signal from X-ray speckle-based imaging data. The experimental setup is simple, as it requires only the addition of a diffuser to a full-field microscope setup. Sandpaper is an appropriate diffuser material in the hard x-ray regime. We propose an approach to extract the mean scattering width, directionality, and orientation from the recorded speckle images acquired with the technique. We demonstrate that our method can detect and quantify the orientation of fibres inside a carbon fibre reinforced polymer (CFRP) sample within one degree of accuracy and show how the accuracy depends on the number of included measurements. We show that the reconstruction parameters can be tuned to increase or decrease accuracy at the expense of spatial resolution. |
doi_str_mv | 10.1371/journal.pone.0273315 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2707848970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715383168</galeid><doaj_id>oai_doaj_org_article_1b261c9164c549b0bb19df67c39d60ca</doaj_id><sourcerecordid>A715383168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-730115d40840e8c5c63a78067bbe7cc32d658b1dd438e5d65c6334ef0e7e4b5e3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6DwQLgrgXHZOmTdqbhWFRd2CXFXXFu5Amp52MmWZMUnH-vanTXbayFxLIx-lz3uScvknyEqMFJgy_29jB9cIsdraHBcoZIbh8lBzjmuQZzRF5fG9_lDzzfoNQSSpKnyZHhKIoQclxcvU9c2KfKu1ABm2jYKqE-5G1GoxK9VZ0uu_SwY_zTa9jWKVXVg1GhLj7JEIA16fLmLf32j9PnrTCeHgxrSfJzYf3X88vssvrj6vz5WUmKa1DxgjCuFQFqgoElSwlJYJViLKmASYlyRUtqwYrVZAKyniIACmgRcCgaEogJ8mrg-7OWM-nTnieM8SqoqoZisTqQCgrNnznYiVuz63Q_G_Auo4LF7Q0wHGTUyxrTAtZFnWDmgbXqqVMklpRJEXUOptuG5otKAl9cMLMROdfer3mnf3F6yInNC-jwNtJwNmfA_jAt9pLMEb0YIfp3SxndRXR1_-gD1c3UZ2IBei-tfFeOYryJcPxLxNMR63FA1QcCrZaRtu0OsZnCaezhMgE-B06MXjPV18-_z97_W3OvrnHrkGYsPbWDKPh_BwsDqB01nsH7V2TMeKj62-7wUfX88n15A9EG_HI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707848970</pqid></control><display><type>article</type><title>X-ray directional dark-field imaging using Unified Modulated Pattern Analysis</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Smith, Ronan ; De Marco, Fabio ; Broche, Ludovic ; Zdora, Marie-Christine ; Phillips, Nicholas W ; Boardman, Richard ; Thibault, Pierre</creator><contributor>Wu, Xuejian</contributor><creatorcontrib>Smith, Ronan ; De Marco, Fabio ; Broche, Ludovic ; Zdora, Marie-Christine ; Phillips, Nicholas W ; Boardman, Richard ; Thibault, Pierre ; Wu, Xuejian</creatorcontrib><description>X-ray directional dark-field imaging is a recent technique that can reveal a sample’s small-scale structural properties which are otherwise invisible in a conventional imaging system. In particular, directional dark-field can detect and quantify the orientation of anisotropic structures. Here, we present an algorithm that allows for the extraction of a directional dark-field signal from X-ray speckle-based imaging data. The experimental setup is simple, as it requires only the addition of a diffuser to a full-field microscope setup. Sandpaper is an appropriate diffuser material in the hard x-ray regime. We propose an approach to extract the mean scattering width, directionality, and orientation from the recorded speckle images acquired with the technique. We demonstrate that our method can detect and quantify the orientation of fibres inside a carbon fibre reinforced polymer (CFRP) sample within one degree of accuracy and show how the accuracy depends on the number of included measurements. We show that the reconstruction parameters can be tuned to increase or decrease accuracy at the expense of spatial resolution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0273315</identifier><identifier>PMID: 36037163</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Anisotropy ; Carbon fiber reinforced plastics ; Chronic obstructive pulmonary disease ; Composite materials ; Diffusers ; Evaluation ; Fiber reinforced polymers ; Image acquisition ; Image reconstruction ; Imaging systems ; Medicine and Health Sciences ; Orientation ; Pattern analysis ; Physical Sciences ; Polymers ; Radiation ; Research and Analysis Methods ; Spatial discrimination ; Spatial resolution ; X ray imagery ; X-rays</subject><ispartof>PloS one, 2022-08, Vol.17 (8), p.e0273315-e0273315</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Smith et al 2022 Smith et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-730115d40840e8c5c63a78067bbe7cc32d658b1dd438e5d65c6334ef0e7e4b5e3</citedby><cites>FETCH-LOGICAL-c669t-730115d40840e8c5c63a78067bbe7cc32d658b1dd438e5d65c6334ef0e7e4b5e3</cites><orcidid>0000-0001-6953-6709 ; 0000-0002-9742-7937 ; 0000-0002-5748-9295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423625/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423625/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Wu, Xuejian</contributor><creatorcontrib>Smith, Ronan</creatorcontrib><creatorcontrib>De Marco, Fabio</creatorcontrib><creatorcontrib>Broche, Ludovic</creatorcontrib><creatorcontrib>Zdora, Marie-Christine</creatorcontrib><creatorcontrib>Phillips, Nicholas W</creatorcontrib><creatorcontrib>Boardman, Richard</creatorcontrib><creatorcontrib>Thibault, Pierre</creatorcontrib><title>X-ray directional dark-field imaging using Unified Modulated Pattern Analysis</title><title>PloS one</title><description>X-ray directional dark-field imaging is a recent technique that can reveal a sample’s small-scale structural properties which are otherwise invisible in a conventional imaging system. In particular, directional dark-field can detect and quantify the orientation of anisotropic structures. Here, we present an algorithm that allows for the extraction of a directional dark-field signal from X-ray speckle-based imaging data. The experimental setup is simple, as it requires only the addition of a diffuser to a full-field microscope setup. Sandpaper is an appropriate diffuser material in the hard x-ray regime. We propose an approach to extract the mean scattering width, directionality, and orientation from the recorded speckle images acquired with the technique. We demonstrate that our method can detect and quantify the orientation of fibres inside a carbon fibre reinforced polymer (CFRP) sample within one degree of accuracy and show how the accuracy depends on the number of included measurements. We show that the reconstruction parameters can be tuned to increase or decrease accuracy at the expense of spatial resolution.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Carbon fiber reinforced plastics</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Composite materials</subject><subject>Diffusers</subject><subject>Evaluation</subject><subject>Fiber reinforced polymers</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Imaging systems</subject><subject>Medicine and Health Sciences</subject><subject>Orientation</subject><subject>Pattern analysis</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Radiation</subject><subject>Research and Analysis Methods</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>X ray imagery</subject><subject>X-rays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6DwQLgrgXHZOmTdqbhWFRd2CXFXXFu5Amp52MmWZMUnH-vanTXbayFxLIx-lz3uScvknyEqMFJgy_29jB9cIsdraHBcoZIbh8lBzjmuQZzRF5fG9_lDzzfoNQSSpKnyZHhKIoQclxcvU9c2KfKu1ABm2jYKqE-5G1GoxK9VZ0uu_SwY_zTa9jWKVXVg1GhLj7JEIA16fLmLf32j9PnrTCeHgxrSfJzYf3X88vssvrj6vz5WUmKa1DxgjCuFQFqgoElSwlJYJViLKmASYlyRUtqwYrVZAKyniIACmgRcCgaEogJ8mrg-7OWM-nTnieM8SqoqoZisTqQCgrNnznYiVuz63Q_G_Auo4LF7Q0wHGTUyxrTAtZFnWDmgbXqqVMklpRJEXUOptuG5otKAl9cMLMROdfer3mnf3F6yInNC-jwNtJwNmfA_jAt9pLMEb0YIfp3SxndRXR1_-gD1c3UZ2IBei-tfFeOYryJcPxLxNMR63FA1QcCrZaRtu0OsZnCaezhMgE-B06MXjPV18-_z97_W3OvrnHrkGYsPbWDKPh_BwsDqB01nsH7V2TMeKj62-7wUfX88n15A9EG_HI</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Smith, Ronan</creator><creator>De Marco, Fabio</creator><creator>Broche, Ludovic</creator><creator>Zdora, Marie-Christine</creator><creator>Phillips, Nicholas W</creator><creator>Boardman, Richard</creator><creator>Thibault, Pierre</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6953-6709</orcidid><orcidid>https://orcid.org/0000-0002-9742-7937</orcidid><orcidid>https://orcid.org/0000-0002-5748-9295</orcidid></search><sort><creationdate>20220829</creationdate><title>X-ray directional dark-field imaging using Unified Modulated Pattern Analysis</title><author>Smith, Ronan ; De Marco, Fabio ; Broche, Ludovic ; Zdora, Marie-Christine ; Phillips, Nicholas W ; Boardman, Richard ; Thibault, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-730115d40840e8c5c63a78067bbe7cc32d658b1dd438e5d65c6334ef0e7e4b5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Carbon fiber reinforced plastics</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Composite materials</topic><topic>Diffusers</topic><topic>Evaluation</topic><topic>Fiber reinforced polymers</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Imaging systems</topic><topic>Medicine and Health Sciences</topic><topic>Orientation</topic><topic>Pattern analysis</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Radiation</topic><topic>Research and Analysis Methods</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>X ray imagery</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Ronan</creatorcontrib><creatorcontrib>De Marco, Fabio</creatorcontrib><creatorcontrib>Broche, Ludovic</creatorcontrib><creatorcontrib>Zdora, Marie-Christine</creatorcontrib><creatorcontrib>Phillips, Nicholas W</creatorcontrib><creatorcontrib>Boardman, Richard</creatorcontrib><creatorcontrib>Thibault, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Ronan</au><au>De Marco, Fabio</au><au>Broche, Ludovic</au><au>Zdora, Marie-Christine</au><au>Phillips, Nicholas W</au><au>Boardman, Richard</au><au>Thibault, Pierre</au><au>Wu, Xuejian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray directional dark-field imaging using Unified Modulated Pattern Analysis</atitle><jtitle>PloS one</jtitle><date>2022-08-29</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e0273315</spage><epage>e0273315</epage><pages>e0273315-e0273315</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>X-ray directional dark-field imaging is a recent technique that can reveal a sample’s small-scale structural properties which are otherwise invisible in a conventional imaging system. In particular, directional dark-field can detect and quantify the orientation of anisotropic structures. Here, we present an algorithm that allows for the extraction of a directional dark-field signal from X-ray speckle-based imaging data. The experimental setup is simple, as it requires only the addition of a diffuser to a full-field microscope setup. Sandpaper is an appropriate diffuser material in the hard x-ray regime. We propose an approach to extract the mean scattering width, directionality, and orientation from the recorded speckle images acquired with the technique. We demonstrate that our method can detect and quantify the orientation of fibres inside a carbon fibre reinforced polymer (CFRP) sample within one degree of accuracy and show how the accuracy depends on the number of included measurements. We show that the reconstruction parameters can be tuned to increase or decrease accuracy at the expense of spatial resolution.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36037163</pmid><doi>10.1371/journal.pone.0273315</doi><tpages>e0273315</tpages><orcidid>https://orcid.org/0000-0001-6953-6709</orcidid><orcidid>https://orcid.org/0000-0002-9742-7937</orcidid><orcidid>https://orcid.org/0000-0002-5748-9295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-08, Vol.17 (8), p.e0273315-e0273315 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2707848970 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Anisotropy Carbon fiber reinforced plastics Chronic obstructive pulmonary disease Composite materials Diffusers Evaluation Fiber reinforced polymers Image acquisition Image reconstruction Imaging systems Medicine and Health Sciences Orientation Pattern analysis Physical Sciences Polymers Radiation Research and Analysis Methods Spatial discrimination Spatial resolution X ray imagery X-rays |
title | X-ray directional dark-field imaging using Unified Modulated Pattern Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20directional%20dark-field%20imaging%20using%20Unified%20Modulated%20Pattern%20Analysis&rft.jtitle=PloS%20one&rft.au=Smith,%20Ronan&rft.date=2022-08-29&rft.volume=17&rft.issue=8&rft.spage=e0273315&rft.epage=e0273315&rft.pages=e0273315-e0273315&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0273315&rft_dat=%3Cgale_plos_%3EA715383168%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707848970&rft_id=info:pmid/36037163&rft_galeid=A715383168&rft_doaj_id=oai_doaj_org_article_1b261c9164c549b0bb19df67c39d60ca&rfr_iscdi=true |