Response of future hydropower generation of cascade reservoirs to climate change in alpine regions

Climate warming accelerates the hydrological cycle, especially in high-latitude and high-altitude areas. The increase in temperature will increase the amount of snow and glacier melting and change the runoff, which will affect the operations of cascade reservoirs significantly. Therefore, taking the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-08, Vol.17 (8), p.e0269389-e0269389
Hauptverfasser: Yan, Bing, Xu, Yi, Liu, Heng, Huang, Changshuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0269389
container_issue 8
container_start_page e0269389
container_title PloS one
container_volume 17
creator Yan, Bing
Xu, Yi
Liu, Heng
Huang, Changshuo
description Climate warming accelerates the hydrological cycle, especially in high-latitude and high-altitude areas. The increase in temperature will increase the amount of snow and glacier melting and change the runoff, which will affect the operations of cascade reservoirs significantly. Therefore, taking the upper reaches of the Yellow River with an alpine climate as an example, we propose an improved SIMHYD-SNOW, which considers the snowmelt runoff process. The impacts of climate changes on the runoff process were revealed based on the SIMHYD-SNOW model using the precipitation and temperature data predicted by the SDSM model. A model for the maximum power generation of the cascade reservoirs in the upper reaches of the Yellow River was constructed to explore the impacts of climate changes on the inter-annual and intra-annual hydropower generation of the cascade reservoirs at different periods in the future. The results show that climate change has changed the spatial and temporal allocation of water resources in this area. The future runoff will decrease during the flood period (July to September) but increase significantly during the non-flood period. The inter-annual and intra-annual hydropower generation under the RCP8.5 climate change scenario is significantly lower than the RCP2.6 and RCP4.5 climate change scenarios, and as the CO.sub.2 emission concentration increases, this gap increases significantly. This study can provide technical references for the precise formulation of water resources management under climate change.
doi_str_mv 10.1371/journal.pone.0269389
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2704227891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714403225</galeid><doaj_id>oai_doaj_org_article_c836cd7da7344f6284ad835510a13d94</doaj_id><sourcerecordid>A714403225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-a535bfb9c290abd19c78c7b795c7c324d8ff30b401f43e70a97e1dfa944b0a53</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6DwQLgujFjPlq09wIy-LHwMLCungbTtOTToZOMybt6v57U6fKVvbCq4TkOe_JeU9Olr2kZE25pO93fgw9dOuD73FNWKl4pR5lp1RxtioZ4Y_v7U-yZzHuCCl4VZZPsxNeqEpUjJxm9TXGpBAx9za34zAGzLd3TfAH_wND3mKPAQbn--neQDTQYB4wYrj1LsR88Lnp3B4GzM0W-hZz1-fQHVw_YW0KjM-zJxa6iC_m9Sy7-fTx5uLL6vLq8-bi_HJlSloNKyh4UdtaGaYI1A1VRlZG1lIVRhrORFNZy0ktCLWCoySgJNLGghKiJin4LHt1lD10PurZnaiZJIIxWSmaiM2RaDzs9CGkZ4c77cHp3wc-tBrC4EyH2lS8NI1sQHIhbMkqAU3Fi4ISoLxRIml9mLON9R4bg_0QoFuILm96t9Wtv9WKK6IISwJvZ4Hgv48YB7130WDXQY9-PL67Sk0tVEJf_4M-XN1MtZAKcL31Ka-ZRPW5pEIQztjk0voBCqa27p1JX8m6dL4IeLcISMyAP4cWxhj15uv1_7NX35bsm3vsFqEbttF34_TX4hIUR9AEH2NA-9dkSvQ0CX_c0NMk6HkS-C-6Evok</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704227891</pqid></control><display><type>article</type><title>Response of future hydropower generation of cascade reservoirs to climate change in alpine regions</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yan, Bing ; Xu, Yi ; Liu, Heng ; Huang, Changshuo</creator><contributor>Añel, Juan A.</contributor><creatorcontrib>Yan, Bing ; Xu, Yi ; Liu, Heng ; Huang, Changshuo ; Añel, Juan A.</creatorcontrib><description>Climate warming accelerates the hydrological cycle, especially in high-latitude and high-altitude areas. The increase in temperature will increase the amount of snow and glacier melting and change the runoff, which will affect the operations of cascade reservoirs significantly. Therefore, taking the upper reaches of the Yellow River with an alpine climate as an example, we propose an improved SIMHYD-SNOW, which considers the snowmelt runoff process. The impacts of climate changes on the runoff process were revealed based on the SIMHYD-SNOW model using the precipitation and temperature data predicted by the SDSM model. A model for the maximum power generation of the cascade reservoirs in the upper reaches of the Yellow River was constructed to explore the impacts of climate changes on the inter-annual and intra-annual hydropower generation of the cascade reservoirs at different periods in the future. The results show that climate change has changed the spatial and temporal allocation of water resources in this area. The future runoff will decrease during the flood period (July to September) but increase significantly during the non-flood period. The inter-annual and intra-annual hydropower generation under the RCP8.5 climate change scenario is significantly lower than the RCP2.6 and RCP4.5 climate change scenarios, and as the CO.sub.2 emission concentration increases, this gap increases significantly. This study can provide technical references for the precise formulation of water resources management under climate change.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0269389</identifier><identifier>PMID: 35984820</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Alpine climates ; Alpine regions ; Carbon dioxide ; Carbon dioxide emissions ; Climate change ; Climate change scenarios ; Climatic changes ; Earth Sciences ; Ecology and Environmental Sciences ; Emission analysis ; Environmental aspects ; Environmental impact ; Floods ; Glacial runoff ; Glacier melting ; Glaciers ; Glaciohydrology ; Global warming ; High altitude ; Hydroelectric power ; Hydroelectric power generation ; Hydrologic cycle ; Hydrology ; Influence ; Management ; Maximum power ; Neural networks ; Precipitation ; Research and Analysis Methods ; Reservoirs ; Resource allocation ; Rivers ; Runoff ; Runoff process ; Snowmelt ; Snowmelt runoff ; Temperature data ; Water ; Water management ; Water resources ; Water resources management</subject><ispartof>PloS one, 2022-08, Vol.17 (8), p.e0269389-e0269389</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Yan et al 2022 Yan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c618t-a535bfb9c290abd19c78c7b795c7c324d8ff30b401f43e70a97e1dfa944b0a53</cites><orcidid>0000-0002-4398-7007 ; 0000-0002-1607-4245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390902/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390902/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Añel, Juan A.</contributor><creatorcontrib>Yan, Bing</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Huang, Changshuo</creatorcontrib><title>Response of future hydropower generation of cascade reservoirs to climate change in alpine regions</title><title>PloS one</title><description>Climate warming accelerates the hydrological cycle, especially in high-latitude and high-altitude areas. The increase in temperature will increase the amount of snow and glacier melting and change the runoff, which will affect the operations of cascade reservoirs significantly. Therefore, taking the upper reaches of the Yellow River with an alpine climate as an example, we propose an improved SIMHYD-SNOW, which considers the snowmelt runoff process. The impacts of climate changes on the runoff process were revealed based on the SIMHYD-SNOW model using the precipitation and temperature data predicted by the SDSM model. A model for the maximum power generation of the cascade reservoirs in the upper reaches of the Yellow River was constructed to explore the impacts of climate changes on the inter-annual and intra-annual hydropower generation of the cascade reservoirs at different periods in the future. The results show that climate change has changed the spatial and temporal allocation of water resources in this area. The future runoff will decrease during the flood period (July to September) but increase significantly during the non-flood period. The inter-annual and intra-annual hydropower generation under the RCP8.5 climate change scenario is significantly lower than the RCP2.6 and RCP4.5 climate change scenarios, and as the CO.sub.2 emission concentration increases, this gap increases significantly. This study can provide technical references for the precise formulation of water resources management under climate change.</description><subject>Alpine climates</subject><subject>Alpine regions</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate change</subject><subject>Climate change scenarios</subject><subject>Climatic changes</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Emission analysis</subject><subject>Environmental aspects</subject><subject>Environmental impact</subject><subject>Floods</subject><subject>Glacial runoff</subject><subject>Glacier melting</subject><subject>Glaciers</subject><subject>Glaciohydrology</subject><subject>Global warming</subject><subject>High altitude</subject><subject>Hydroelectric power</subject><subject>Hydroelectric power generation</subject><subject>Hydrologic cycle</subject><subject>Hydrology</subject><subject>Influence</subject><subject>Management</subject><subject>Maximum power</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Research and Analysis Methods</subject><subject>Reservoirs</subject><subject>Resource allocation</subject><subject>Rivers</subject><subject>Runoff</subject><subject>Runoff process</subject><subject>Snowmelt</subject><subject>Snowmelt runoff</subject><subject>Temperature data</subject><subject>Water</subject><subject>Water management</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6DwQLgujFjPlq09wIy-LHwMLCungbTtOTToZOMybt6v57U6fKVvbCq4TkOe_JeU9Olr2kZE25pO93fgw9dOuD73FNWKl4pR5lp1RxtioZ4Y_v7U-yZzHuCCl4VZZPsxNeqEpUjJxm9TXGpBAx9za34zAGzLd3TfAH_wND3mKPAQbn--neQDTQYB4wYrj1LsR88Lnp3B4GzM0W-hZz1-fQHVw_YW0KjM-zJxa6iC_m9Sy7-fTx5uLL6vLq8-bi_HJlSloNKyh4UdtaGaYI1A1VRlZG1lIVRhrORFNZy0ktCLWCoySgJNLGghKiJin4LHt1lD10PurZnaiZJIIxWSmaiM2RaDzs9CGkZ4c77cHp3wc-tBrC4EyH2lS8NI1sQHIhbMkqAU3Fi4ISoLxRIml9mLON9R4bg_0QoFuILm96t9Wtv9WKK6IISwJvZ4Hgv48YB7130WDXQY9-PL67Sk0tVEJf_4M-XN1MtZAKcL31Ka-ZRPW5pEIQztjk0voBCqa27p1JX8m6dL4IeLcISMyAP4cWxhj15uv1_7NX35bsm3vsFqEbttF34_TX4hIUR9AEH2NA-9dkSvQ0CX_c0NMk6HkS-C-6Evok</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>Yan, Bing</creator><creator>Xu, Yi</creator><creator>Liu, Heng</creator><creator>Huang, Changshuo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4398-7007</orcidid><orcidid>https://orcid.org/0000-0002-1607-4245</orcidid></search><sort><creationdate>20220819</creationdate><title>Response of future hydropower generation of cascade reservoirs to climate change in alpine regions</title><author>Yan, Bing ; Xu, Yi ; Liu, Heng ; Huang, Changshuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-a535bfb9c290abd19c78c7b795c7c324d8ff30b401f43e70a97e1dfa944b0a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alpine climates</topic><topic>Alpine regions</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate change</topic><topic>Climate change scenarios</topic><topic>Climatic changes</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Emission analysis</topic><topic>Environmental aspects</topic><topic>Environmental impact</topic><topic>Floods</topic><topic>Glacial runoff</topic><topic>Glacier melting</topic><topic>Glaciers</topic><topic>Glaciohydrology</topic><topic>Global warming</topic><topic>High altitude</topic><topic>Hydroelectric power</topic><topic>Hydroelectric power generation</topic><topic>Hydrologic cycle</topic><topic>Hydrology</topic><topic>Influence</topic><topic>Management</topic><topic>Maximum power</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Research and Analysis Methods</topic><topic>Reservoirs</topic><topic>Resource allocation</topic><topic>Rivers</topic><topic>Runoff</topic><topic>Runoff process</topic><topic>Snowmelt</topic><topic>Snowmelt runoff</topic><topic>Temperature data</topic><topic>Water</topic><topic>Water management</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Bing</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Huang, Changshuo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Bing</au><au>Xu, Yi</au><au>Liu, Heng</au><au>Huang, Changshuo</au><au>Añel, Juan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of future hydropower generation of cascade reservoirs to climate change in alpine regions</atitle><jtitle>PloS one</jtitle><date>2022-08-19</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e0269389</spage><epage>e0269389</epage><pages>e0269389-e0269389</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Climate warming accelerates the hydrological cycle, especially in high-latitude and high-altitude areas. The increase in temperature will increase the amount of snow and glacier melting and change the runoff, which will affect the operations of cascade reservoirs significantly. Therefore, taking the upper reaches of the Yellow River with an alpine climate as an example, we propose an improved SIMHYD-SNOW, which considers the snowmelt runoff process. The impacts of climate changes on the runoff process were revealed based on the SIMHYD-SNOW model using the precipitation and temperature data predicted by the SDSM model. A model for the maximum power generation of the cascade reservoirs in the upper reaches of the Yellow River was constructed to explore the impacts of climate changes on the inter-annual and intra-annual hydropower generation of the cascade reservoirs at different periods in the future. The results show that climate change has changed the spatial and temporal allocation of water resources in this area. The future runoff will decrease during the flood period (July to September) but increase significantly during the non-flood period. The inter-annual and intra-annual hydropower generation under the RCP8.5 climate change scenario is significantly lower than the RCP2.6 and RCP4.5 climate change scenarios, and as the CO.sub.2 emission concentration increases, this gap increases significantly. This study can provide technical references for the precise formulation of water resources management under climate change.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35984820</pmid><doi>10.1371/journal.pone.0269389</doi><tpages>e0269389</tpages><orcidid>https://orcid.org/0000-0002-4398-7007</orcidid><orcidid>https://orcid.org/0000-0002-1607-4245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-08, Vol.17 (8), p.e0269389-e0269389
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2704227891
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alpine climates
Alpine regions
Carbon dioxide
Carbon dioxide emissions
Climate change
Climate change scenarios
Climatic changes
Earth Sciences
Ecology and Environmental Sciences
Emission analysis
Environmental aspects
Environmental impact
Floods
Glacial runoff
Glacier melting
Glaciers
Glaciohydrology
Global warming
High altitude
Hydroelectric power
Hydroelectric power generation
Hydrologic cycle
Hydrology
Influence
Management
Maximum power
Neural networks
Precipitation
Research and Analysis Methods
Reservoirs
Resource allocation
Rivers
Runoff
Runoff process
Snowmelt
Snowmelt runoff
Temperature data
Water
Water management
Water resources
Water resources management
title Response of future hydropower generation of cascade reservoirs to climate change in alpine regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20future%20hydropower%20generation%20of%20cascade%20reservoirs%20to%20climate%20change%20in%20alpine%20regions&rft.jtitle=PloS%20one&rft.au=Yan,%20Bing&rft.date=2022-08-19&rft.volume=17&rft.issue=8&rft.spage=e0269389&rft.epage=e0269389&rft.pages=e0269389-e0269389&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0269389&rft_dat=%3Cgale_plos_%3EA714403225%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704227891&rft_id=info:pmid/35984820&rft_galeid=A714403225&rft_doaj_id=oai_doaj_org_article_c836cd7da7344f6284ad835510a13d94&rfr_iscdi=true