Network diffusion model predicts neurodegeneration in limb-onset Amyotrophic Lateral Sclerosis

Objective Emerging evidences suggest that the trans-neural propagation of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43) contributes to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). We investigated whether Network Diffusion Model (NDM), a biophysical model of sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-08, Vol.17 (8), p.e0272736-e0272736
Hauptverfasser: Bhattarai, Anjan, Chen, Zhaolin, Chua, Phyllis, Talman, Paul, Mathers, Susan, Chapman, Caron, Howe, James, Lee, C. M. Sarah, Lie, Yenni, Poudel, Govinda R, Egan, Gary F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0272736
container_issue 8
container_start_page e0272736
container_title PloS one
container_volume 17
creator Bhattarai, Anjan
Chen, Zhaolin
Chua, Phyllis
Talman, Paul
Mathers, Susan
Chapman, Caron
Howe, James
Lee, C. M. Sarah
Lie, Yenni
Poudel, Govinda R
Egan, Gary F
description Objective Emerging evidences suggest that the trans-neural propagation of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43) contributes to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). We investigated whether Network Diffusion Model (NDM), a biophysical model of spread of pathology via the brain connectome, could capture the severity and progression of neurodegeneration (atrophy) in ALS. Methods We measured degeneration in limb-onset ALS patients (n = 14 at baseline, 12 at 6-months, and 9 at 12 months) and controls (n = 12 at baseline) using FreeSurfer analysis on the structural T1-weighted Magnetic Resonance Imaging (MRI) data. The NDM was simulated on the canonical structural connectome from the IIT Human Brain Atlas. To determine whether NDM could predict the atrophy pattern in ALS, the accumulation of pathology modelled by NDM was correlated against atrophy measured using MRI. In order to investigate whether network spread on the brain connectome derived from healthy individuals were significant findings, we compared our findings against network spread simulated on random networks. Results The cross-sectional analyses revealed that the network diffusion seeded from the inferior frontal gyrus (pars triangularis and pars orbitalis) significantly predicts the atrophy pattern in ALS compared to controls. Whereas, atrophy over time with-in the ALS group was best predicted by seeding the network diffusion process from the inferior temporal gyrus at 6-month and caudal middle frontal gyrus at 12-month. Network spread simulated on the random networks showed that the findings using healthy brain connectomes are significantly different from null models. Interpretation Our findings suggest the involvement of extra-motor regions in seeding the spread of pathology in ALS. Importantly, NDM was able to recapitulate the dynamics of pathological progression in ALS. Understanding the spatial shifts in the seeds of degeneration over time can potentially inform further research in the design of disease modifying therapeutic interventions in ALS.
doi_str_mv 10.1371/journal.pone.0272736
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2701014186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713630020</galeid><doaj_id>oai_doaj_org_article_cfcaec36b91f4ea4a09852b8ab6a901a</doaj_id><sourcerecordid>A713630020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-fc332877f7fb3657df2ae24a6fa57bf523ce43bde2a2ed78aa653736c91fa9af3</originalsourceid><addsrcrecordid>eNqNk1tv0zAUxyMEYlvhGyARCQmNhxZfEid5mVRNXCpVTGLAI9aJc9y6JHGxHWDfHncNaEF7QH6wdfzz_1x8TpI8o2RBeUFf7-zgemgXe9vjgrCCFVw8SE5pxdlcMMIf3jmfJGfe7wjJeSnE4-SE51VOc0pOk68fMPy07lvaGK0Hb2yfdrbBNt07bIwKPu1xcNGywR4dhANg-rQ1XT23vceQLrsbG5zdb41K1xAi1KbXqkVnvfFPkkcaWo9Px32WfH775tPl-_n66t3qcrmeKyGqMNeKc1YWhS50zUVeNJoBsgyEhryodc64wozXDTJg2BQlgMh5zFdVVEMFms-S50fdfWu9HEvjJSsIJTSjpYjE6kg0FnZy70wH7kZaMPLWYN1GggsmBi6VVoCKizqqZwgZkKrMWV1CLaAiFKLWxehtqDtsFPYhZj0Rnd70Zis39oes4sfxnEeB81HA2e8D-iA74xW2LfRoh2PclFf5bdwv_kHvz26kNhATML2OXwLqICqX0aXghMQ2mCWLe6i4GuyMin2kTbRPHryaPIhMwF9hA4P3cnX98f_Zqy9T9uUddovQhq237XBoLz8FsyOoYjt5h_pvkSmRhzH4Uw15GAM5jgH_Dd8l-qo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701014186</pqid></control><display><type>article</type><title>Network diffusion model predicts neurodegeneration in limb-onset Amyotrophic Lateral Sclerosis</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Bhattarai, Anjan ; Chen, Zhaolin ; Chua, Phyllis ; Talman, Paul ; Mathers, Susan ; Chapman, Caron ; Howe, James ; Lee, C. M. Sarah ; Lie, Yenni ; Poudel, Govinda R ; Egan, Gary F</creator><creatorcontrib>Bhattarai, Anjan ; Chen, Zhaolin ; Chua, Phyllis ; Talman, Paul ; Mathers, Susan ; Chapman, Caron ; Howe, James ; Lee, C. M. Sarah ; Lie, Yenni ; Poudel, Govinda R ; Egan, Gary F</creatorcontrib><description>Objective Emerging evidences suggest that the trans-neural propagation of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43) contributes to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). We investigated whether Network Diffusion Model (NDM), a biophysical model of spread of pathology via the brain connectome, could capture the severity and progression of neurodegeneration (atrophy) in ALS. Methods We measured degeneration in limb-onset ALS patients (n = 14 at baseline, 12 at 6-months, and 9 at 12 months) and controls (n = 12 at baseline) using FreeSurfer analysis on the structural T1-weighted Magnetic Resonance Imaging (MRI) data. The NDM was simulated on the canonical structural connectome from the IIT Human Brain Atlas. To determine whether NDM could predict the atrophy pattern in ALS, the accumulation of pathology modelled by NDM was correlated against atrophy measured using MRI. In order to investigate whether network spread on the brain connectome derived from healthy individuals were significant findings, we compared our findings against network spread simulated on random networks. Results The cross-sectional analyses revealed that the network diffusion seeded from the inferior frontal gyrus (pars triangularis and pars orbitalis) significantly predicts the atrophy pattern in ALS compared to controls. Whereas, atrophy over time with-in the ALS group was best predicted by seeding the network diffusion process from the inferior temporal gyrus at 6-month and caudal middle frontal gyrus at 12-month. Network spread simulated on the random networks showed that the findings using healthy brain connectomes are significantly different from null models. Interpretation Our findings suggest the involvement of extra-motor regions in seeding the spread of pathology in ALS. Importantly, NDM was able to recapitulate the dynamics of pathological progression in ALS. Understanding the spatial shifts in the seeds of degeneration over time can potentially inform further research in the design of disease modifying therapeutic interventions in ALS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0272736</identifier><identifier>PMID: 35951510</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Alzheimer's disease ; Amyotrophic lateral sclerosis ; Analysis ; Atrophy ; Biology and Life Sciences ; Brain ; Computer and Information Sciences ; Degeneration ; Dementia ; Deoxyribonucleic acid ; Design modifications ; Diagnosis ; Diffusion ; Diffusion models ; DNA ; DNA-binding protein ; Frontal gyrus ; Genetic aspects ; Genotype &amp; phenotype ; Hypotheses ; Magnetic resonance ; Magnetic resonance imaging ; Medicine and Health Sciences ; Modelling ; Neurodegeneration ; Neuroimaging ; Neuropathology ; Pathology ; Patients ; Propagation ; Protein binding ; Protein seeding ; Proteins ; Research and Analysis Methods ; Seeds ; Simulation ; Spinal cord ; Temporal gyrus ; Therapeutic applications</subject><ispartof>PloS one, 2022-08, Vol.17 (8), p.e0272736-e0272736</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Bhattarai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Bhattarai et al 2022 Bhattarai et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-fc332877f7fb3657df2ae24a6fa57bf523ce43bde2a2ed78aa653736c91fa9af3</citedby><cites>FETCH-LOGICAL-c669t-fc332877f7fb3657df2ae24a6fa57bf523ce43bde2a2ed78aa653736c91fa9af3</cites><orcidid>0000-0002-9178-6509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371353/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371353/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Bhattarai, Anjan</creatorcontrib><creatorcontrib>Chen, Zhaolin</creatorcontrib><creatorcontrib>Chua, Phyllis</creatorcontrib><creatorcontrib>Talman, Paul</creatorcontrib><creatorcontrib>Mathers, Susan</creatorcontrib><creatorcontrib>Chapman, Caron</creatorcontrib><creatorcontrib>Howe, James</creatorcontrib><creatorcontrib>Lee, C. M. Sarah</creatorcontrib><creatorcontrib>Lie, Yenni</creatorcontrib><creatorcontrib>Poudel, Govinda R</creatorcontrib><creatorcontrib>Egan, Gary F</creatorcontrib><title>Network diffusion model predicts neurodegeneration in limb-onset Amyotrophic Lateral Sclerosis</title><title>PloS one</title><description>Objective Emerging evidences suggest that the trans-neural propagation of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43) contributes to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). We investigated whether Network Diffusion Model (NDM), a biophysical model of spread of pathology via the brain connectome, could capture the severity and progression of neurodegeneration (atrophy) in ALS. Methods We measured degeneration in limb-onset ALS patients (n = 14 at baseline, 12 at 6-months, and 9 at 12 months) and controls (n = 12 at baseline) using FreeSurfer analysis on the structural T1-weighted Magnetic Resonance Imaging (MRI) data. The NDM was simulated on the canonical structural connectome from the IIT Human Brain Atlas. To determine whether NDM could predict the atrophy pattern in ALS, the accumulation of pathology modelled by NDM was correlated against atrophy measured using MRI. In order to investigate whether network spread on the brain connectome derived from healthy individuals were significant findings, we compared our findings against network spread simulated on random networks. Results The cross-sectional analyses revealed that the network diffusion seeded from the inferior frontal gyrus (pars triangularis and pars orbitalis) significantly predicts the atrophy pattern in ALS compared to controls. Whereas, atrophy over time with-in the ALS group was best predicted by seeding the network diffusion process from the inferior temporal gyrus at 6-month and caudal middle frontal gyrus at 12-month. Network spread simulated on the random networks showed that the findings using healthy brain connectomes are significantly different from null models. Interpretation Our findings suggest the involvement of extra-motor regions in seeding the spread of pathology in ALS. Importantly, NDM was able to recapitulate the dynamics of pathological progression in ALS. Understanding the spatial shifts in the seeds of degeneration over time can potentially inform further research in the design of disease modifying therapeutic interventions in ALS.</description><subject>Alzheimer's disease</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Analysis</subject><subject>Atrophy</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Computer and Information Sciences</subject><subject>Degeneration</subject><subject>Dementia</subject><subject>Deoxyribonucleic acid</subject><subject>Design modifications</subject><subject>Diagnosis</subject><subject>Diffusion</subject><subject>Diffusion models</subject><subject>DNA</subject><subject>DNA-binding protein</subject><subject>Frontal gyrus</subject><subject>Genetic aspects</subject><subject>Genotype &amp; phenotype</subject><subject>Hypotheses</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Neurodegeneration</subject><subject>Neuroimaging</subject><subject>Neuropathology</subject><subject>Pathology</subject><subject>Patients</subject><subject>Propagation</subject><subject>Protein binding</subject><subject>Protein seeding</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Seeds</subject><subject>Simulation</subject><subject>Spinal cord</subject><subject>Temporal gyrus</subject><subject>Therapeutic applications</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUxyMEYlvhGyARCQmNhxZfEid5mVRNXCpVTGLAI9aJc9y6JHGxHWDfHncNaEF7QH6wdfzz_1x8TpI8o2RBeUFf7-zgemgXe9vjgrCCFVw8SE5pxdlcMMIf3jmfJGfe7wjJeSnE4-SE51VOc0pOk68fMPy07lvaGK0Hb2yfdrbBNt07bIwKPu1xcNGywR4dhANg-rQ1XT23vceQLrsbG5zdb41K1xAi1KbXqkVnvfFPkkcaWo9Px32WfH775tPl-_n66t3qcrmeKyGqMNeKc1YWhS50zUVeNJoBsgyEhryodc64wozXDTJg2BQlgMh5zFdVVEMFms-S50fdfWu9HEvjJSsIJTSjpYjE6kg0FnZy70wH7kZaMPLWYN1GggsmBi6VVoCKizqqZwgZkKrMWV1CLaAiFKLWxehtqDtsFPYhZj0Rnd70Zis39oes4sfxnEeB81HA2e8D-iA74xW2LfRoh2PclFf5bdwv_kHvz26kNhATML2OXwLqICqX0aXghMQ2mCWLe6i4GuyMin2kTbRPHryaPIhMwF9hA4P3cnX98f_Zqy9T9uUddovQhq237XBoLz8FsyOoYjt5h_pvkSmRhzH4Uw15GAM5jgH_Dd8l-qo</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>Bhattarai, Anjan</creator><creator>Chen, Zhaolin</creator><creator>Chua, Phyllis</creator><creator>Talman, Paul</creator><creator>Mathers, Susan</creator><creator>Chapman, Caron</creator><creator>Howe, James</creator><creator>Lee, C. M. Sarah</creator><creator>Lie, Yenni</creator><creator>Poudel, Govinda R</creator><creator>Egan, Gary F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9178-6509</orcidid></search><sort><creationdate>20220811</creationdate><title>Network diffusion model predicts neurodegeneration in limb-onset Amyotrophic Lateral Sclerosis</title><author>Bhattarai, Anjan ; Chen, Zhaolin ; Chua, Phyllis ; Talman, Paul ; Mathers, Susan ; Chapman, Caron ; Howe, James ; Lee, C. M. Sarah ; Lie, Yenni ; Poudel, Govinda R ; Egan, Gary F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-fc332877f7fb3657df2ae24a6fa57bf523ce43bde2a2ed78aa653736c91fa9af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer's disease</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Analysis</topic><topic>Atrophy</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Computer and Information Sciences</topic><topic>Degeneration</topic><topic>Dementia</topic><topic>Deoxyribonucleic acid</topic><topic>Design modifications</topic><topic>Diagnosis</topic><topic>Diffusion</topic><topic>Diffusion models</topic><topic>DNA</topic><topic>DNA-binding protein</topic><topic>Frontal gyrus</topic><topic>Genetic aspects</topic><topic>Genotype &amp; phenotype</topic><topic>Hypotheses</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Neurodegeneration</topic><topic>Neuroimaging</topic><topic>Neuropathology</topic><topic>Pathology</topic><topic>Patients</topic><topic>Propagation</topic><topic>Protein binding</topic><topic>Protein seeding</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Seeds</topic><topic>Simulation</topic><topic>Spinal cord</topic><topic>Temporal gyrus</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattarai, Anjan</creatorcontrib><creatorcontrib>Chen, Zhaolin</creatorcontrib><creatorcontrib>Chua, Phyllis</creatorcontrib><creatorcontrib>Talman, Paul</creatorcontrib><creatorcontrib>Mathers, Susan</creatorcontrib><creatorcontrib>Chapman, Caron</creatorcontrib><creatorcontrib>Howe, James</creatorcontrib><creatorcontrib>Lee, C. M. Sarah</creatorcontrib><creatorcontrib>Lie, Yenni</creatorcontrib><creatorcontrib>Poudel, Govinda R</creatorcontrib><creatorcontrib>Egan, Gary F</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattarai, Anjan</au><au>Chen, Zhaolin</au><au>Chua, Phyllis</au><au>Talman, Paul</au><au>Mathers, Susan</au><au>Chapman, Caron</au><au>Howe, James</au><au>Lee, C. M. Sarah</au><au>Lie, Yenni</au><au>Poudel, Govinda R</au><au>Egan, Gary F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network diffusion model predicts neurodegeneration in limb-onset Amyotrophic Lateral Sclerosis</atitle><jtitle>PloS one</jtitle><date>2022-08-11</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e0272736</spage><epage>e0272736</epage><pages>e0272736-e0272736</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Objective Emerging evidences suggest that the trans-neural propagation of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43) contributes to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). We investigated whether Network Diffusion Model (NDM), a biophysical model of spread of pathology via the brain connectome, could capture the severity and progression of neurodegeneration (atrophy) in ALS. Methods We measured degeneration in limb-onset ALS patients (n = 14 at baseline, 12 at 6-months, and 9 at 12 months) and controls (n = 12 at baseline) using FreeSurfer analysis on the structural T1-weighted Magnetic Resonance Imaging (MRI) data. The NDM was simulated on the canonical structural connectome from the IIT Human Brain Atlas. To determine whether NDM could predict the atrophy pattern in ALS, the accumulation of pathology modelled by NDM was correlated against atrophy measured using MRI. In order to investigate whether network spread on the brain connectome derived from healthy individuals were significant findings, we compared our findings against network spread simulated on random networks. Results The cross-sectional analyses revealed that the network diffusion seeded from the inferior frontal gyrus (pars triangularis and pars orbitalis) significantly predicts the atrophy pattern in ALS compared to controls. Whereas, atrophy over time with-in the ALS group was best predicted by seeding the network diffusion process from the inferior temporal gyrus at 6-month and caudal middle frontal gyrus at 12-month. Network spread simulated on the random networks showed that the findings using healthy brain connectomes are significantly different from null models. Interpretation Our findings suggest the involvement of extra-motor regions in seeding the spread of pathology in ALS. Importantly, NDM was able to recapitulate the dynamics of pathological progression in ALS. Understanding the spatial shifts in the seeds of degeneration over time can potentially inform further research in the design of disease modifying therapeutic interventions in ALS.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35951510</pmid><doi>10.1371/journal.pone.0272736</doi><tpages>e0272736</tpages><orcidid>https://orcid.org/0000-0002-9178-6509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-08, Vol.17 (8), p.e0272736-e0272736
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2701014186
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Alzheimer's disease
Amyotrophic lateral sclerosis
Analysis
Atrophy
Biology and Life Sciences
Brain
Computer and Information Sciences
Degeneration
Dementia
Deoxyribonucleic acid
Design modifications
Diagnosis
Diffusion
Diffusion models
DNA
DNA-binding protein
Frontal gyrus
Genetic aspects
Genotype & phenotype
Hypotheses
Magnetic resonance
Magnetic resonance imaging
Medicine and Health Sciences
Modelling
Neurodegeneration
Neuroimaging
Neuropathology
Pathology
Patients
Propagation
Protein binding
Protein seeding
Proteins
Research and Analysis Methods
Seeds
Simulation
Spinal cord
Temporal gyrus
Therapeutic applications
title Network diffusion model predicts neurodegeneration in limb-onset Amyotrophic Lateral Sclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20diffusion%20model%20predicts%20neurodegeneration%20in%20limb-onset%20Amyotrophic%20Lateral%20Sclerosis&rft.jtitle=PloS%20one&rft.au=Bhattarai,%20Anjan&rft.date=2022-08-11&rft.volume=17&rft.issue=8&rft.spage=e0272736&rft.epage=e0272736&rft.pages=e0272736-e0272736&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0272736&rft_dat=%3Cgale_plos_%3EA713630020%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701014186&rft_id=info:pmid/35951510&rft_galeid=A713630020&rft_doaj_id=oai_doaj_org_article_cfcaec36b91f4ea4a09852b8ab6a901a&rfr_iscdi=true