Robust muscle force prediction using NMFSEMD denoising and FOS identification

In this paper, an aliasing noise restraint technique and a system identification-based surface electromyography (sEMG)-force prediction model are proposed to realize a type of robust sEMG and muscle force prediction. For signal denoising, a novel non-negative matrix factorization screening empirical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-08, Vol.17 (8), p.e0272118-e0272118
Hauptverfasser: Wang, Yuan, Li, Fan, Liu, Haoting, Zhang, Zhiqiang, Wang, Duming, Chen, Shanguang, Wang, Chunhui, Lan, Jinhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0272118
container_issue 8
container_start_page e0272118
container_title PloS one
container_volume 17
creator Wang, Yuan
Li, Fan
Liu, Haoting
Zhang, Zhiqiang
Wang, Duming
Chen, Shanguang
Wang, Chunhui
Lan, Jinhui
description In this paper, an aliasing noise restraint technique and a system identification-based surface electromyography (sEMG)-force prediction model are proposed to realize a type of robust sEMG and muscle force prediction. For signal denoising, a novel non-negative matrix factorization screening empirical mode decomposition (NMFSEMD) and a fast orthogonal search (FOS)-based muscle force prediction model are developed. First, the NMFSEMD model is used to screen the empirical mode decomposition (EMD) results into the noisy intrinsic mode functions (IMF). Then, the noise matrix is computed using IMF translation and superposition, and the matrix is used as the input of NMF to obtain the denoised IMF. Furthermore, the reconstruction outcome of the NMFSEMD method can be used to estimate the denoised sEMG. Finally, a new sEMG muscle force prediction model, which considers a kind of candidate function in derivative form, is constructed, and a data-training-based linear weighted model is obtained. Extensive experimental results validate the suggested method's correction: after the NMFSEMD denoising of raw sEMG signal, the signal-noise ratio (SNR) can be improved by about 15.0 dB, and the energy percentage (EP) can be greater than 90.0%. Comparing with the muscle force prediction models using the traditional pretreatment and LSSVM, and the NMFSEMD plus LSSVM-based method, the mean square error (MSE) of our approach can be reduced by at least 1.2%.
doi_str_mv 10.1371/journal.pone.0272118
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2697645471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712367039</galeid><doaj_id>oai_doaj_org_article_678c43c945ba4af282d895ea39155a1f</doaj_id><sourcerecordid>A712367039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-6a5a3bef53a3b5aee1f510e2761b9a3957a57183dfcda69e5417ea967e66f3e33</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwD5CIhITgoiWOYzu-mTSNFSqtVFqBW-vUOW5dpXGxEwT_HqcNaEG7QL441vHj93zoTZKXJJsSKsj7net8A_X04BqcZrnICSkfJedE0nzC84w-vnc_S56FsMsyRkvOnyZnlMmc0DI7TxZ3bt2FNt13QdeYGuc1pgePldWtdU3aBdts0s-L2epm8SGtsHH2mIGmSmfLVWpjqrXGaujx58kTA3XAF0O8SL7Obr5cf5rcLj_Or69uJ5qTsp1wYEDXaBiNgQEiMYxkmAtO1hKoZAKYICWtjK6AS2QFEQiSC-TcUKT0Inl10j3ULqhhE0HlXApesEKQSMxPROVgpw7e7sH_Ug6sOiac3yjwrY0zKy5KXVAtC7aGAkxe5lUpGcY-CGNATNS6HKp16z1WOk7soR6Jjl8au1Ub90NJWpScsSjwdhDw7nuHoVV7GzTWNTTouqFvUdAj-vof9OHpBmoDcQDbGBfr6l5UXQmSUy4yKiM1fYCKp8K91dE2xsb86MO70YfItPiz3UAXgpqv7v6fXX4bs2_usVuEut0GV3e9ZcIYLE6g9i4Ej-bvkkmmetf_2YbqXa8G19PfPubxsQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697645471</pqid></control><display><type>article</type><title>Robust muscle force prediction using NMFSEMD denoising and FOS identification</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yuan ; Li, Fan ; Liu, Haoting ; Zhang, Zhiqiang ; Wang, Duming ; Chen, Shanguang ; Wang, Chunhui ; Lan, Jinhui</creator><contributor>Cè, Emiliano</contributor><creatorcontrib>Wang, Yuan ; Li, Fan ; Liu, Haoting ; Zhang, Zhiqiang ; Wang, Duming ; Chen, Shanguang ; Wang, Chunhui ; Lan, Jinhui ; Cè, Emiliano</creatorcontrib><description>In this paper, an aliasing noise restraint technique and a system identification-based surface electromyography (sEMG)-force prediction model are proposed to realize a type of robust sEMG and muscle force prediction. For signal denoising, a novel non-negative matrix factorization screening empirical mode decomposition (NMFSEMD) and a fast orthogonal search (FOS)-based muscle force prediction model are developed. First, the NMFSEMD model is used to screen the empirical mode decomposition (EMD) results into the noisy intrinsic mode functions (IMF). Then, the noise matrix is computed using IMF translation and superposition, and the matrix is used as the input of NMF to obtain the denoised IMF. Furthermore, the reconstruction outcome of the NMFSEMD method can be used to estimate the denoised sEMG. Finally, a new sEMG muscle force prediction model, which considers a kind of candidate function in derivative form, is constructed, and a data-training-based linear weighted model is obtained. Extensive experimental results validate the suggested method's correction: after the NMFSEMD denoising of raw sEMG signal, the signal-noise ratio (SNR) can be improved by about 15.0 dB, and the energy percentage (EP) can be greater than 90.0%. Comparing with the muscle force prediction models using the traditional pretreatment and LSSVM, and the NMFSEMD plus LSSVM-based method, the mean square error (MSE) of our approach can be reduced by at least 1.2%.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0272118</identifier><identifier>PMID: 35921380</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Accuracy ; Analysis ; Astronauts ; Atrophy, Muscular ; Biology and Life Sciences ; Computer and Information Sciences ; Decomposition ; Electromyography ; Engineering and Technology ; Fault diagnosis ; Force ; Identification ; Mean square errors ; Medicine and Health Sciences ; Methods ; Modelling ; Muscle strength ; Muscles ; Neural networks ; Noise ; Noise reduction ; Optimization techniques ; Physical Sciences ; Physiology ; Prediction models ; Research and Analysis Methods ; Risk factors ; Robustness ; Signal to noise ratio ; System identification</subject><ispartof>PloS one, 2022-08, Vol.17 (8), p.e0272118-e0272118</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Wang et al 2022 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c618t-6a5a3bef53a3b5aee1f510e2761b9a3957a57183dfcda69e5417ea967e66f3e33</cites><orcidid>0000-0002-1857-6214 ; 0000-0003-2537-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Cè, Emiliano</contributor><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Liu, Haoting</creatorcontrib><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Duming</creatorcontrib><creatorcontrib>Chen, Shanguang</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Lan, Jinhui</creatorcontrib><title>Robust muscle force prediction using NMFSEMD denoising and FOS identification</title><title>PloS one</title><description>In this paper, an aliasing noise restraint technique and a system identification-based surface electromyography (sEMG)-force prediction model are proposed to realize a type of robust sEMG and muscle force prediction. For signal denoising, a novel non-negative matrix factorization screening empirical mode decomposition (NMFSEMD) and a fast orthogonal search (FOS)-based muscle force prediction model are developed. First, the NMFSEMD model is used to screen the empirical mode decomposition (EMD) results into the noisy intrinsic mode functions (IMF). Then, the noise matrix is computed using IMF translation and superposition, and the matrix is used as the input of NMF to obtain the denoised IMF. Furthermore, the reconstruction outcome of the NMFSEMD method can be used to estimate the denoised sEMG. Finally, a new sEMG muscle force prediction model, which considers a kind of candidate function in derivative form, is constructed, and a data-training-based linear weighted model is obtained. Extensive experimental results validate the suggested method's correction: after the NMFSEMD denoising of raw sEMG signal, the signal-noise ratio (SNR) can be improved by about 15.0 dB, and the energy percentage (EP) can be greater than 90.0%. Comparing with the muscle force prediction models using the traditional pretreatment and LSSVM, and the NMFSEMD plus LSSVM-based method, the mean square error (MSE) of our approach can be reduced by at least 1.2%.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Astronauts</subject><subject>Atrophy, Muscular</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Decomposition</subject><subject>Electromyography</subject><subject>Engineering and Technology</subject><subject>Fault diagnosis</subject><subject>Force</subject><subject>Identification</subject><subject>Mean square errors</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Modelling</subject><subject>Muscle strength</subject><subject>Muscles</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Optimization techniques</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Prediction models</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>System identification</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwD5CIhITgoiWOYzu-mTSNFSqtVFqBW-vUOW5dpXGxEwT_HqcNaEG7QL441vHj93zoTZKXJJsSKsj7net8A_X04BqcZrnICSkfJedE0nzC84w-vnc_S56FsMsyRkvOnyZnlMmc0DI7TxZ3bt2FNt13QdeYGuc1pgePldWtdU3aBdts0s-L2epm8SGtsHH2mIGmSmfLVWpjqrXGaujx58kTA3XAF0O8SL7Obr5cf5rcLj_Or69uJ5qTsp1wYEDXaBiNgQEiMYxkmAtO1hKoZAKYICWtjK6AS2QFEQiSC-TcUKT0Inl10j3ULqhhE0HlXApesEKQSMxPROVgpw7e7sH_Ug6sOiac3yjwrY0zKy5KXVAtC7aGAkxe5lUpGcY-CGNATNS6HKp16z1WOk7soR6Jjl8au1Ub90NJWpScsSjwdhDw7nuHoVV7GzTWNTTouqFvUdAj-vof9OHpBmoDcQDbGBfr6l5UXQmSUy4yKiM1fYCKp8K91dE2xsb86MO70YfItPiz3UAXgpqv7v6fXX4bs2_usVuEut0GV3e9ZcIYLE6g9i4Ej-bvkkmmetf_2YbqXa8G19PfPubxsQ</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Wang, Yuan</creator><creator>Li, Fan</creator><creator>Liu, Haoting</creator><creator>Zhang, Zhiqiang</creator><creator>Wang, Duming</creator><creator>Chen, Shanguang</creator><creator>Wang, Chunhui</creator><creator>Lan, Jinhui</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1857-6214</orcidid><orcidid>https://orcid.org/0000-0003-2537-6138</orcidid></search><sort><creationdate>20220803</creationdate><title>Robust muscle force prediction using NMFSEMD denoising and FOS identification</title><author>Wang, Yuan ; Li, Fan ; Liu, Haoting ; Zhang, Zhiqiang ; Wang, Duming ; Chen, Shanguang ; Wang, Chunhui ; Lan, Jinhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-6a5a3bef53a3b5aee1f510e2761b9a3957a57183dfcda69e5417ea967e66f3e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Astronauts</topic><topic>Atrophy, Muscular</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Decomposition</topic><topic>Electromyography</topic><topic>Engineering and Technology</topic><topic>Fault diagnosis</topic><topic>Force</topic><topic>Identification</topic><topic>Mean square errors</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Modelling</topic><topic>Muscle strength</topic><topic>Muscles</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Optimization techniques</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Prediction models</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Liu, Haoting</creatorcontrib><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Duming</creatorcontrib><creatorcontrib>Chen, Shanguang</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Lan, Jinhui</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuan</au><au>Li, Fan</au><au>Liu, Haoting</au><au>Zhang, Zhiqiang</au><au>Wang, Duming</au><au>Chen, Shanguang</au><au>Wang, Chunhui</au><au>Lan, Jinhui</au><au>Cè, Emiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust muscle force prediction using NMFSEMD denoising and FOS identification</atitle><jtitle>PloS one</jtitle><date>2022-08-03</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e0272118</spage><epage>e0272118</epage><pages>e0272118-e0272118</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, an aliasing noise restraint technique and a system identification-based surface electromyography (sEMG)-force prediction model are proposed to realize a type of robust sEMG and muscle force prediction. For signal denoising, a novel non-negative matrix factorization screening empirical mode decomposition (NMFSEMD) and a fast orthogonal search (FOS)-based muscle force prediction model are developed. First, the NMFSEMD model is used to screen the empirical mode decomposition (EMD) results into the noisy intrinsic mode functions (IMF). Then, the noise matrix is computed using IMF translation and superposition, and the matrix is used as the input of NMF to obtain the denoised IMF. Furthermore, the reconstruction outcome of the NMFSEMD method can be used to estimate the denoised sEMG. Finally, a new sEMG muscle force prediction model, which considers a kind of candidate function in derivative form, is constructed, and a data-training-based linear weighted model is obtained. Extensive experimental results validate the suggested method's correction: after the NMFSEMD denoising of raw sEMG signal, the signal-noise ratio (SNR) can be improved by about 15.0 dB, and the energy percentage (EP) can be greater than 90.0%. Comparing with the muscle force prediction models using the traditional pretreatment and LSSVM, and the NMFSEMD plus LSSVM-based method, the mean square error (MSE) of our approach can be reduced by at least 1.2%.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35921380</pmid><doi>10.1371/journal.pone.0272118</doi><tpages>e0272118</tpages><orcidid>https://orcid.org/0000-0002-1857-6214</orcidid><orcidid>https://orcid.org/0000-0003-2537-6138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-08, Vol.17 (8), p.e0272118-e0272118
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2697645471
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Analysis
Astronauts
Atrophy, Muscular
Biology and Life Sciences
Computer and Information Sciences
Decomposition
Electromyography
Engineering and Technology
Fault diagnosis
Force
Identification
Mean square errors
Medicine and Health Sciences
Methods
Modelling
Muscle strength
Muscles
Neural networks
Noise
Noise reduction
Optimization techniques
Physical Sciences
Physiology
Prediction models
Research and Analysis Methods
Risk factors
Robustness
Signal to noise ratio
System identification
title Robust muscle force prediction using NMFSEMD denoising and FOS identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20muscle%20force%20prediction%20using%20NMFSEMD%20denoising%20and%20FOS%20identification&rft.jtitle=PloS%20one&rft.au=Wang,%20Yuan&rft.date=2022-08-03&rft.volume=17&rft.issue=8&rft.spage=e0272118&rft.epage=e0272118&rft.pages=e0272118-e0272118&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0272118&rft_dat=%3Cgale_plos_%3EA712367039%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697645471&rft_id=info:pmid/35921380&rft_galeid=A712367039&rft_doaj_id=oai_doaj_org_article_678c43c945ba4af282d895ea39155a1f&rfr_iscdi=true