Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function
Ferlins are complex, multi-domain proteins, involved in membrane trafficking, membrane repair, and exocytosis. The large size of ferlin proteins and the lack of consensus regarding domain boundaries have slowed progress in understanding molecular-level details of ferlin protein structure and functio...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-07, Vol.17 (7), p.e0270188-e0270188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0270188 |
---|---|
container_issue | 7 |
container_start_page | e0270188 |
container_title | PloS one |
container_volume | 17 |
creator | Dominguez, Matthew J McCord, Jon J Sutton, R. Bryan |
description | Ferlins are complex, multi-domain proteins, involved in membrane trafficking, membrane repair, and exocytosis. The large size of ferlin proteins and the lack of consensus regarding domain boundaries have slowed progress in understanding molecular-level details of ferlin protein structure and function. However, in silico protein folding techniques have significantly enhanced our understanding of the complex ferlin family domain structure. We used RoseTTAFold to assemble full-length models for the six human ferlin proteins (dysferlin, myoferlin, otoferlin, Fer1L4, Fer1L5, and Fer1L6). Our full-length ferlin models were used to obtain objective domain boundaries, and these boundaries were supported by AlphaFold2 predictions. Despite the differences in amino acid sequence between the ferlin proteins, the domain ranges and distinct subdomains in the ferlin domains are remarkably consistent. Further, the RoseTTAFold/AlphaFold2 in silico boundary predictions allowed us to describe and characterize a previously unknown C2 domain, ubiquitous in all human ferlins, which we refer to as C2-FerA. At present, the ferlin domain-domain interactions implied by the full-length in silico models are predicted to have a low accuracy; however, the use of RoseTTAFold and AlphaFold2 as a domain finder has proven to be a powerful research tool for understanding ferlin structure. |
doi_str_mv | 10.1371/journal.pone.0270188 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2695866319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711807525</galeid><doaj_id>oai_doaj_org_article_963002a30b464c2c9ce1863e9f93ae45</doaj_id><sourcerecordid>A711807525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-2176cc65a743b88a6b494969d0b64ab2b402e8c18af0982d1aefe06ee614dcd3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DQQLgqwPM-bWtPFBWBYvAwsL6-JrSNPTNkObjEkq-u03s1N1K_sgeUg4-Z3_uXBOlr3EaINpid_t3OStGjZ7Z2GDSIlwVT3KTrGgZM0Joo_vvU-yZyHsECpoxfnT7IQWAmFcitPMXEMDrbHGdnnsIVde9yaCjpOH3LV5C34wNt97F8HY8D7f2mC6Pobc2OjycRqiWTduVH-hPEQ_HQWUbfJ2sjoaZ59nT1o1BHgx36vs5tPHm4sv68urz9uL88u15lzENcEl15oXqmS0rirFayaY4KJBNWeqJjVDBCqNK9UiUZEGK2gBcQCOWaMbuspeHWX3gwtyblKQhIsi1U5TS1bZ9kg0Tu3k3ptR-V_SKSPvDM53Uvlo9ABScIoQURTVjDNNtNCAK05BtIIqYEXS-jBHm-oRGg02ejUsRJc_1vSycz-koJSygieBs1nAu-8ThChHEzQMg7Lgpru8ecUJ5iyhr_9BH65upjqVCjC2dSmuPojK8xLjCpUFOeS9eYBKp4HR6DRRrUn2hcPbhUNiIvyMnZpCkNuv1__PXn1bsm_usT2oIfbBDdNhYsISZEdQexeCh_ZPkzGSh4X43Q15WAg5LwS9Be_9_Qw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695866319</pqid></control><display><type>article</type><title>Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Dominguez, Matthew J ; McCord, Jon J ; Sutton, R. Bryan</creator><contributor>Gasset, Maria</contributor><creatorcontrib>Dominguez, Matthew J ; McCord, Jon J ; Sutton, R. Bryan ; Gasset, Maria</creatorcontrib><description>Ferlins are complex, multi-domain proteins, involved in membrane trafficking, membrane repair, and exocytosis. The large size of ferlin proteins and the lack of consensus regarding domain boundaries have slowed progress in understanding molecular-level details of ferlin protein structure and function. However, in silico protein folding techniques have significantly enhanced our understanding of the complex ferlin family domain structure. We used RoseTTAFold to assemble full-length models for the six human ferlin proteins (dysferlin, myoferlin, otoferlin, Fer1L4, Fer1L5, and Fer1L6). Our full-length ferlin models were used to obtain objective domain boundaries, and these boundaries were supported by AlphaFold2 predictions. Despite the differences in amino acid sequence between the ferlin proteins, the domain ranges and distinct subdomains in the ferlin domains are remarkably consistent. Further, the RoseTTAFold/AlphaFold2 in silico boundary predictions allowed us to describe and characterize a previously unknown C2 domain, ubiquitous in all human ferlins, which we refer to as C2-FerA. At present, the ferlin domain-domain interactions implied by the full-length in silico models are predicted to have a low accuracy; however, the use of RoseTTAFold and AlphaFold2 as a domain finder has proven to be a powerful research tool for understanding ferlin structure.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0270188</identifier><identifier>PMID: 35901179</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Amino acid sequence ; Amino acids ; Biology and Life Sciences ; Boundaries ; Care and treatment ; Causes of ; Exocytosis ; Hearing loss ; Hydrogen bonds ; Membrane trafficking ; Membranes ; Molecular structure ; Mutation ; Physical Sciences ; Protein folding ; Protein structure ; Proteins ; Research and Analysis Methods ; Structure ; Structure-function relationships</subject><ispartof>PloS one, 2022-07, Vol.17 (7), p.e0270188-e0270188</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Dominguez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Dominguez et al 2022 Dominguez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-2176cc65a743b88a6b494969d0b64ab2b402e8c18af0982d1aefe06ee614dcd3</citedby><cites>FETCH-LOGICAL-c669t-2176cc65a743b88a6b494969d0b64ab2b402e8c18af0982d1aefe06ee614dcd3</cites><orcidid>0000-0002-8816-1022 ; 0000-0003-1033-5181 ; 0000-0001-8393-5239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333456/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333456/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><contributor>Gasset, Maria</contributor><creatorcontrib>Dominguez, Matthew J</creatorcontrib><creatorcontrib>McCord, Jon J</creatorcontrib><creatorcontrib>Sutton, R. Bryan</creatorcontrib><title>Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function</title><title>PloS one</title><description>Ferlins are complex, multi-domain proteins, involved in membrane trafficking, membrane repair, and exocytosis. The large size of ferlin proteins and the lack of consensus regarding domain boundaries have slowed progress in understanding molecular-level details of ferlin protein structure and function. However, in silico protein folding techniques have significantly enhanced our understanding of the complex ferlin family domain structure. We used RoseTTAFold to assemble full-length models for the six human ferlin proteins (dysferlin, myoferlin, otoferlin, Fer1L4, Fer1L5, and Fer1L6). Our full-length ferlin models were used to obtain objective domain boundaries, and these boundaries were supported by AlphaFold2 predictions. Despite the differences in amino acid sequence between the ferlin proteins, the domain ranges and distinct subdomains in the ferlin domains are remarkably consistent. Further, the RoseTTAFold/AlphaFold2 in silico boundary predictions allowed us to describe and characterize a previously unknown C2 domain, ubiquitous in all human ferlins, which we refer to as C2-FerA. At present, the ferlin domain-domain interactions implied by the full-length in silico models are predicted to have a low accuracy; however, the use of RoseTTAFold and AlphaFold2 as a domain finder has proven to be a powerful research tool for understanding ferlin structure.</description><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Biology and Life Sciences</subject><subject>Boundaries</subject><subject>Care and treatment</subject><subject>Causes of</subject><subject>Exocytosis</subject><subject>Hearing loss</subject><subject>Hydrogen bonds</subject><subject>Membrane trafficking</subject><subject>Membranes</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Protein folding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Structure</subject><subject>Structure-function relationships</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DQQLgqwPM-bWtPFBWBYvAwsL6-JrSNPTNkObjEkq-u03s1N1K_sgeUg4-Z3_uXBOlr3EaINpid_t3OStGjZ7Z2GDSIlwVT3KTrGgZM0Joo_vvU-yZyHsECpoxfnT7IQWAmFcitPMXEMDrbHGdnnsIVde9yaCjpOH3LV5C34wNt97F8HY8D7f2mC6Pobc2OjycRqiWTduVH-hPEQ_HQWUbfJ2sjoaZ59nT1o1BHgx36vs5tPHm4sv68urz9uL88u15lzENcEl15oXqmS0rirFayaY4KJBNWeqJjVDBCqNK9UiUZEGK2gBcQCOWaMbuspeHWX3gwtyblKQhIsi1U5TS1bZ9kg0Tu3k3ptR-V_SKSPvDM53Uvlo9ABScIoQURTVjDNNtNCAK05BtIIqYEXS-jBHm-oRGg02ejUsRJc_1vSycz-koJSygieBs1nAu-8ThChHEzQMg7Lgpru8ecUJ5iyhr_9BH65upjqVCjC2dSmuPojK8xLjCpUFOeS9eYBKp4HR6DRRrUn2hcPbhUNiIvyMnZpCkNuv1__PXn1bsm_usT2oIfbBDdNhYsISZEdQexeCh_ZPkzGSh4X43Q15WAg5LwS9Be_9_Qw</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Dominguez, Matthew J</creator><creator>McCord, Jon J</creator><creator>Sutton, R. Bryan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8816-1022</orcidid><orcidid>https://orcid.org/0000-0003-1033-5181</orcidid><orcidid>https://orcid.org/0000-0001-8393-5239</orcidid></search><sort><creationdate>20220728</creationdate><title>Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function</title><author>Dominguez, Matthew J ; McCord, Jon J ; Sutton, R. Bryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-2176cc65a743b88a6b494969d0b64ab2b402e8c18af0982d1aefe06ee614dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Biology and Life Sciences</topic><topic>Boundaries</topic><topic>Care and treatment</topic><topic>Causes of</topic><topic>Exocytosis</topic><topic>Hearing loss</topic><topic>Hydrogen bonds</topic><topic>Membrane trafficking</topic><topic>Membranes</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Protein folding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Structure</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominguez, Matthew J</creatorcontrib><creatorcontrib>McCord, Jon J</creatorcontrib><creatorcontrib>Sutton, R. Bryan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominguez, Matthew J</au><au>McCord, Jon J</au><au>Sutton, R. Bryan</au><au>Gasset, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function</atitle><jtitle>PloS one</jtitle><date>2022-07-28</date><risdate>2022</risdate><volume>17</volume><issue>7</issue><spage>e0270188</spage><epage>e0270188</epage><pages>e0270188-e0270188</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Ferlins are complex, multi-domain proteins, involved in membrane trafficking, membrane repair, and exocytosis. The large size of ferlin proteins and the lack of consensus regarding domain boundaries have slowed progress in understanding molecular-level details of ferlin protein structure and function. However, in silico protein folding techniques have significantly enhanced our understanding of the complex ferlin family domain structure. We used RoseTTAFold to assemble full-length models for the six human ferlin proteins (dysferlin, myoferlin, otoferlin, Fer1L4, Fer1L5, and Fer1L6). Our full-length ferlin models were used to obtain objective domain boundaries, and these boundaries were supported by AlphaFold2 predictions. Despite the differences in amino acid sequence between the ferlin proteins, the domain ranges and distinct subdomains in the ferlin domains are remarkably consistent. Further, the RoseTTAFold/AlphaFold2 in silico boundary predictions allowed us to describe and characterize a previously unknown C2 domain, ubiquitous in all human ferlins, which we refer to as C2-FerA. At present, the ferlin domain-domain interactions implied by the full-length in silico models are predicted to have a low accuracy; however, the use of RoseTTAFold and AlphaFold2 as a domain finder has proven to be a powerful research tool for understanding ferlin structure.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35901179</pmid><doi>10.1371/journal.pone.0270188</doi><tpages>e0270188</tpages><orcidid>https://orcid.org/0000-0002-8816-1022</orcidid><orcidid>https://orcid.org/0000-0003-1033-5181</orcidid><orcidid>https://orcid.org/0000-0001-8393-5239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-07, Vol.17 (7), p.e0270188-e0270188 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2695866319 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Amino acid sequence Amino acids Biology and Life Sciences Boundaries Care and treatment Causes of Exocytosis Hearing loss Hydrogen bonds Membrane trafficking Membranes Molecular structure Mutation Physical Sciences Protein folding Protein structure Proteins Research and Analysis Methods Structure Structure-function relationships |
title | Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redefining%20the%20architecture%20of%20ferlin%20proteins:%20Insights%20into%20multi-domain%20protein%20structure%20and%20function&rft.jtitle=PloS%20one&rft.au=Dominguez,%20Matthew%20J&rft.date=2022-07-28&rft.volume=17&rft.issue=7&rft.spage=e0270188&rft.epage=e0270188&rft.pages=e0270188-e0270188&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0270188&rft_dat=%3Cgale_plos_%3EA711807525%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695866319&rft_id=info:pmid/35901179&rft_galeid=A711807525&rft_doaj_id=oai_doaj_org_article_963002a30b464c2c9ce1863e9f93ae45&rfr_iscdi=true |