Pleiotropic constraints promote the evolution of cooperation in cellular groups

The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. These cell lineages occur within microbial communities, and multicellular organisms in the form of tumours and cancer. In contrast to an earlier study, here we show how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2022-06, Vol.20 (6), p.e3001626
Hauptverfasser: Bentley, Michael A, Yates, Christian A, Hein, Jotun, Preston, Gail M, Foster, Kevin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e3001626
container_title PLoS biology
container_volume 20
creator Bentley, Michael A
Yates, Christian A
Hein, Jotun
Preston, Gail M
Foster, Kevin R
description The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. These cell lineages occur within microbial communities, and multicellular organisms in the form of tumours and cancer. In contrast to an earlier study, here we show how the evolution of pleiotropic genetic architectures-which link the expression of cooperative and private traits-can protect against cheater lineages and allow cooperation to evolve. We develop an age-structured model of cellular groups and show that cooperation breaks down more slowly within groups that tie expression to a private trait than in groups that do not. We then show that this results in group selection for pleiotropy, which strongly promotes cooperation by limiting the emergence of cheater lineages. These results predict that pleiotropy will rapidly evolve, so long as groups persist long enough for cheater lineages to threaten cooperation. Our results hold when pleiotropic links can be undermined by mutations, when pleiotropy is itself costly, and in mixed-genotype groups such as those that occur in microbes. Finally, we consider features of multicellular organisms-a germ line and delayed reproductive maturity-and show that pleiotropy is again predicted to be important for maintaining cooperation. The study of cancer in multicellular organisms provides the best evidence for pleiotropic constraints, where abberant cell proliferation is linked to apoptosis, senescence, and terminal differentiation. Alongside development from a single cell, we propose that the evolution of pleiotropic constraints has been critical for cooperation in many cellular groups.
doi_str_mv 10.1371/journal.pbio.3001626
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2690724537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A709577589</galeid><doaj_id>oai_doaj_org_article_4b1501cd1e7c41b3a0b4e07732276f25</doaj_id><sourcerecordid>A709577589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-72fa2e5c268b2d70d49afd3e9b9a32b15c76a1a89930f71e6fd30e0d9b55175b3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEoqXwBggisWEzgy-xHW-QqopLpUplAWvLdk6mHnlygp1U4u1xOmnVIla-fec_F_9V9ZaSLeWKftrjnAYbt6MLuOWEUMnks-qUikZsVNuK54_2J9WrnPeEMKZZ-7I64UKKtkScVtc_IgScEo7B1x6HPCUbhinXY8IDTlBPN1DDLcZ5CjjU2BcIR0j27hiG2kOMc7Sp3iWcx_y6etHbmOHNup5Vv75--XnxfXN1_e3y4vxq44Vopo1ivWUgPJOtY50iXaNt33HQTlvOHBVeSUttqzUnvaIgyyMB0mknBFXC8bPq_VF3jJjNOotsmNREsUZwVYjLI9Gh3ZsxhYNNfwzaYO4uMO2MTVPwEUxTEhLqOwrKN9RxS1wDRCnOmJI9E0Xr85ptdgfoPAxlTPGJ6NOXIdyYHd4aTaWUYhH4uAok_D1Dnswh5GV0dgCcl7oVF1q1hBf0wz_o_7tbqZ0tDYShL39o_SJqzhXRQinR6kI1R8onzDlB_1AyJWZx0b22WVxkVheVsHeP230IurcN_wtaF8WK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690724537</pqid></control><display><type>article</type><title>Pleiotropic constraints promote the evolution of cooperation in cellular groups</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Bentley, Michael A ; Yates, Christian A ; Hein, Jotun ; Preston, Gail M ; Foster, Kevin R</creator><creatorcontrib>Bentley, Michael A ; Yates, Christian A ; Hein, Jotun ; Preston, Gail M ; Foster, Kevin R</creatorcontrib><description>The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. These cell lineages occur within microbial communities, and multicellular organisms in the form of tumours and cancer. In contrast to an earlier study, here we show how the evolution of pleiotropic genetic architectures-which link the expression of cooperative and private traits-can protect against cheater lineages and allow cooperation to evolve. We develop an age-structured model of cellular groups and show that cooperation breaks down more slowly within groups that tie expression to a private trait than in groups that do not. We then show that this results in group selection for pleiotropy, which strongly promotes cooperation by limiting the emergence of cheater lineages. These results predict that pleiotropy will rapidly evolve, so long as groups persist long enough for cheater lineages to threaten cooperation. Our results hold when pleiotropic links can be undermined by mutations, when pleiotropy is itself costly, and in mixed-genotype groups such as those that occur in microbes. Finally, we consider features of multicellular organisms-a germ line and delayed reproductive maturity-and show that pleiotropy is again predicted to be important for maintaining cooperation. The study of cancer in multicellular organisms provides the best evidence for pleiotropic constraints, where abberant cell proliferation is linked to apoptosis, senescence, and terminal differentiation. Alongside development from a single cell, we propose that the evolution of pleiotropic constraints has been critical for cooperation in many cellular groups.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001626</identifier><identifier>PMID: 35658016</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Apoptosis ; Biological Evolution ; Biology and Life Sciences ; Cancer ; Cell proliferation ; Cellular structure ; Cooperation ; Evolution ; Genetic aspects ; Genotype ; Genotypes ; Group selection ; Microbial activity ; Microbial colonies ; Microbiota ; Microorganisms ; Mutation ; Natural history ; Organisms ; Partial differential equations ; Phenotype ; Physiological aspects ; Pleiotropy ; Senescence ; Tumors</subject><ispartof>PLoS biology, 2022-06, Vol.20 (6), p.e3001626</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Bentley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Bentley et al 2022 Bentley et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-72fa2e5c268b2d70d49afd3e9b9a32b15c76a1a89930f71e6fd30e0d9b55175b3</citedby><cites>FETCH-LOGICAL-c554t-72fa2e5c268b2d70d49afd3e9b9a32b15c76a1a89930f71e6fd30e0d9b55175b3</cites><orcidid>0000-0003-4687-6633 ; 0000-0002-8709-6492 ; 0000-0003-3882-4438 ; 0000-0003-0461-7297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35658016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bentley, Michael A</creatorcontrib><creatorcontrib>Yates, Christian A</creatorcontrib><creatorcontrib>Hein, Jotun</creatorcontrib><creatorcontrib>Preston, Gail M</creatorcontrib><creatorcontrib>Foster, Kevin R</creatorcontrib><title>Pleiotropic constraints promote the evolution of cooperation in cellular groups</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. These cell lineages occur within microbial communities, and multicellular organisms in the form of tumours and cancer. In contrast to an earlier study, here we show how the evolution of pleiotropic genetic architectures-which link the expression of cooperative and private traits-can protect against cheater lineages and allow cooperation to evolve. We develop an age-structured model of cellular groups and show that cooperation breaks down more slowly within groups that tie expression to a private trait than in groups that do not. We then show that this results in group selection for pleiotropy, which strongly promotes cooperation by limiting the emergence of cheater lineages. These results predict that pleiotropy will rapidly evolve, so long as groups persist long enough for cheater lineages to threaten cooperation. Our results hold when pleiotropic links can be undermined by mutations, when pleiotropy is itself costly, and in mixed-genotype groups such as those that occur in microbes. Finally, we consider features of multicellular organisms-a germ line and delayed reproductive maturity-and show that pleiotropy is again predicted to be important for maintaining cooperation. The study of cancer in multicellular organisms provides the best evidence for pleiotropic constraints, where abberant cell proliferation is linked to apoptosis, senescence, and terminal differentiation. Alongside development from a single cell, we propose that the evolution of pleiotropic constraints has been critical for cooperation in many cellular groups.</description><subject>Apoptosis</subject><subject>Biological Evolution</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cell proliferation</subject><subject>Cellular structure</subject><subject>Cooperation</subject><subject>Evolution</subject><subject>Genetic aspects</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Group selection</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Natural history</subject><subject>Organisms</subject><subject>Partial differential equations</subject><subject>Phenotype</subject><subject>Physiological aspects</subject><subject>Pleiotropy</subject><subject>Senescence</subject><subject>Tumors</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiMEoqXwBggisWEzgy-xHW-QqopLpUplAWvLdk6mHnlygp1U4u1xOmnVIla-fec_F_9V9ZaSLeWKftrjnAYbt6MLuOWEUMnks-qUikZsVNuK54_2J9WrnPeEMKZZ-7I64UKKtkScVtc_IgScEo7B1x6HPCUbhinXY8IDTlBPN1DDLcZ5CjjU2BcIR0j27hiG2kOMc7Sp3iWcx_y6etHbmOHNup5Vv75--XnxfXN1_e3y4vxq44Vopo1ivWUgPJOtY50iXaNt33HQTlvOHBVeSUttqzUnvaIgyyMB0mknBFXC8bPq_VF3jJjNOotsmNREsUZwVYjLI9Gh3ZsxhYNNfwzaYO4uMO2MTVPwEUxTEhLqOwrKN9RxS1wDRCnOmJI9E0Xr85ptdgfoPAxlTPGJ6NOXIdyYHd4aTaWUYhH4uAok_D1Dnswh5GV0dgCcl7oVF1q1hBf0wz_o_7tbqZ0tDYShL39o_SJqzhXRQinR6kI1R8onzDlB_1AyJWZx0b22WVxkVheVsHeP230IurcN_wtaF8WK</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bentley, Michael A</creator><creator>Yates, Christian A</creator><creator>Hein, Jotun</creator><creator>Preston, Gail M</creator><creator>Foster, Kevin R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-4687-6633</orcidid><orcidid>https://orcid.org/0000-0002-8709-6492</orcidid><orcidid>https://orcid.org/0000-0003-3882-4438</orcidid><orcidid>https://orcid.org/0000-0003-0461-7297</orcidid></search><sort><creationdate>20220601</creationdate><title>Pleiotropic constraints promote the evolution of cooperation in cellular groups</title><author>Bentley, Michael A ; Yates, Christian A ; Hein, Jotun ; Preston, Gail M ; Foster, Kevin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-72fa2e5c268b2d70d49afd3e9b9a32b15c76a1a89930f71e6fd30e0d9b55175b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apoptosis</topic><topic>Biological Evolution</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cell proliferation</topic><topic>Cellular structure</topic><topic>Cooperation</topic><topic>Evolution</topic><topic>Genetic aspects</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Group selection</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Natural history</topic><topic>Organisms</topic><topic>Partial differential equations</topic><topic>Phenotype</topic><topic>Physiological aspects</topic><topic>Pleiotropy</topic><topic>Senescence</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bentley, Michael A</creatorcontrib><creatorcontrib>Yates, Christian A</creatorcontrib><creatorcontrib>Hein, Jotun</creatorcontrib><creatorcontrib>Preston, Gail M</creatorcontrib><creatorcontrib>Foster, Kevin R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentley, Michael A</au><au>Yates, Christian A</au><au>Hein, Jotun</au><au>Preston, Gail M</au><au>Foster, Kevin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pleiotropic constraints promote the evolution of cooperation in cellular groups</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>e3001626</spage><pages>e3001626-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. These cell lineages occur within microbial communities, and multicellular organisms in the form of tumours and cancer. In contrast to an earlier study, here we show how the evolution of pleiotropic genetic architectures-which link the expression of cooperative and private traits-can protect against cheater lineages and allow cooperation to evolve. We develop an age-structured model of cellular groups and show that cooperation breaks down more slowly within groups that tie expression to a private trait than in groups that do not. We then show that this results in group selection for pleiotropy, which strongly promotes cooperation by limiting the emergence of cheater lineages. These results predict that pleiotropy will rapidly evolve, so long as groups persist long enough for cheater lineages to threaten cooperation. Our results hold when pleiotropic links can be undermined by mutations, when pleiotropy is itself costly, and in mixed-genotype groups such as those that occur in microbes. Finally, we consider features of multicellular organisms-a germ line and delayed reproductive maturity-and show that pleiotropy is again predicted to be important for maintaining cooperation. The study of cancer in multicellular organisms provides the best evidence for pleiotropic constraints, where abberant cell proliferation is linked to apoptosis, senescence, and terminal differentiation. Alongside development from a single cell, we propose that the evolution of pleiotropic constraints has been critical for cooperation in many cellular groups.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35658016</pmid><doi>10.1371/journal.pbio.3001626</doi><orcidid>https://orcid.org/0000-0003-4687-6633</orcidid><orcidid>https://orcid.org/0000-0002-8709-6492</orcidid><orcidid>https://orcid.org/0000-0003-3882-4438</orcidid><orcidid>https://orcid.org/0000-0003-0461-7297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2022-06, Vol.20 (6), p.e3001626
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2690724537
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Apoptosis
Biological Evolution
Biology and Life Sciences
Cancer
Cell proliferation
Cellular structure
Cooperation
Evolution
Genetic aspects
Genotype
Genotypes
Group selection
Microbial activity
Microbial colonies
Microbiota
Microorganisms
Mutation
Natural history
Organisms
Partial differential equations
Phenotype
Physiological aspects
Pleiotropy
Senescence
Tumors
title Pleiotropic constraints promote the evolution of cooperation in cellular groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pleiotropic%20constraints%20promote%20the%20evolution%20of%20cooperation%20in%20cellular%20groups&rft.jtitle=PLoS%20biology&rft.au=Bentley,%20Michael%20A&rft.date=2022-06-01&rft.volume=20&rft.issue=6&rft.spage=e3001626&rft.pages=e3001626-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001626&rft_dat=%3Cgale_plos_%3EA709577589%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690724537&rft_id=info:pmid/35658016&rft_galeid=A709577589&rft_doaj_id=oai_doaj_org_article_4b1501cd1e7c41b3a0b4e07732276f25&rfr_iscdi=true