Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events
Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2022-06, Vol.18 (6), p.e1010239-e1010239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010239 |
---|---|
container_issue | 6 |
container_start_page | e1010239 |
container_title | PLoS genetics |
container_volume | 18 |
creator | Cote-L’Heureux, Auden Maurer-Alcalá, Xyrus X. Katz, Laura A. |
description | Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes. |
doi_str_mv | 10.1371/journal.pgen.1010239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2690722304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c6423a1b6c81420aaf28c9ef265bf8b9</doaj_id><sourcerecordid>2690722304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-70bc1fad916a0b3a81faacc05022641b567a3f95ec07cecf4796db3472ed70843</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqXwD5CwxIVLFn_EdswBqar4qFSpF7hwsSbOeJuV117sbKH_Hm83IIo4eWy_88y8o2mal4yumNDs7Sbtc4Sw2q0xrhhllAvzqDllUopWd7R7_Fd80jwrZUOpkL3RT5sTIbVgPZenzbfrMJJKwEKmSCL-ILsADss7ck5m-Jlimyd3Q6BWuitTIclX3Yx5TFuoCQFqDOGeQOYMsXjMBG8xzuV588RDKPhiOc-arx8_fLn43F5df7q8OL9qnaRibjUdHPMwGqaADgL6egHnqKScq44NUmkQ3kh0VDt0vtNGjYPoNMdR074TZ82rI3cXUrHLWIrlylDNuaAHxeVRMSbY2F2etpDvbILJ3j-kvLaQ58kFtE51XAAblOtZxymA570z6LmSg-8HU1nvl2r7YYujq07rAB5AH_7E6cau0601XEqtZAW8WQA5fd9jme12Kg5DgIhpf-i7GjTa6L5KX_8j_b-77qhyOZWS0f9phlF7WJXfWfawKnZZFfELqvezTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690722304</pqid></control><display><type>article</type><title>Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cote-L’Heureux, Auden ; Maurer-Alcalá, Xyrus X. ; Katz, Laura A.</creator><contributor>Feschotte, Cédric</contributor><creatorcontrib>Cote-L’Heureux, Auden ; Maurer-Alcalá, Xyrus X. ; Katz, Laura A. ; Feschotte, Cédric</creatorcontrib><description>Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010239</identifier><identifier>PMID: 35731825</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Anaerobic microorganisms ; Antibiotic resistance ; Bacteria ; Biology and Life Sciences ; Computer and Information Sciences ; Eukaryotes ; Evolutionary genetics ; Gene families ; Gene transfer ; Genes ; Genetic engineering ; Genomes ; Heredity ; Organelles ; Photosynthesis ; Prokaryotes ; Trees</subject><ispartof>PLoS genetics, 2022-06, Vol.18 (6), p.e1010239-e1010239</ispartof><rights>2022 Cote-L’Heureux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Cote-L’Heureux et al 2022 Cote-L’Heureux et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-70bc1fad916a0b3a81faacc05022641b567a3f95ec07cecf4796db3472ed70843</citedby><cites>FETCH-LOGICAL-c503t-70bc1fad916a0b3a81faacc05022641b567a3f95ec07cecf4796db3472ed70843</cites><orcidid>0000-0002-9138-4702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255765/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255765/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids></links><search><contributor>Feschotte, Cédric</contributor><creatorcontrib>Cote-L’Heureux, Auden</creatorcontrib><creatorcontrib>Maurer-Alcalá, Xyrus X.</creatorcontrib><creatorcontrib>Katz, Laura A.</creatorcontrib><title>Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events</title><title>PLoS genetics</title><description>Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.</description><subject>Anaerobic microorganisms</subject><subject>Antibiotic resistance</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Eukaryotes</subject><subject>Evolutionary genetics</subject><subject>Gene families</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Heredity</subject><subject>Organelles</subject><subject>Photosynthesis</subject><subject>Prokaryotes</subject><subject>Trees</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoqXwD5CwxIVLFn_EdswBqar4qFSpF7hwsSbOeJuV117sbKH_Hm83IIo4eWy_88y8o2mal4yumNDs7Sbtc4Sw2q0xrhhllAvzqDllUopWd7R7_Fd80jwrZUOpkL3RT5sTIbVgPZenzbfrMJJKwEKmSCL-ILsADss7ck5m-Jlimyd3Q6BWuitTIclX3Yx5TFuoCQFqDOGeQOYMsXjMBG8xzuV588RDKPhiOc-arx8_fLn43F5df7q8OL9qnaRibjUdHPMwGqaADgL6egHnqKScq44NUmkQ3kh0VDt0vtNGjYPoNMdR074TZ82rI3cXUrHLWIrlylDNuaAHxeVRMSbY2F2etpDvbILJ3j-kvLaQ58kFtE51XAAblOtZxymA570z6LmSg-8HU1nvl2r7YYujq07rAB5AH_7E6cau0601XEqtZAW8WQA5fd9jme12Kg5DgIhpf-i7GjTa6L5KX_8j_b-77qhyOZWS0f9phlF7WJXfWfawKnZZFfELqvezTQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Cote-L’Heureux, Auden</creator><creator>Maurer-Alcalá, Xyrus X.</creator><creator>Katz, Laura A.</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9138-4702</orcidid></search><sort><creationdate>20220601</creationdate><title>Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events</title><author>Cote-L’Heureux, Auden ; Maurer-Alcalá, Xyrus X. ; Katz, Laura A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-70bc1fad916a0b3a81faacc05022641b567a3f95ec07cecf4796db3472ed70843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anaerobic microorganisms</topic><topic>Antibiotic resistance</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Eukaryotes</topic><topic>Evolutionary genetics</topic><topic>Gene families</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Heredity</topic><topic>Organelles</topic><topic>Photosynthesis</topic><topic>Prokaryotes</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cote-L’Heureux, Auden</creatorcontrib><creatorcontrib>Maurer-Alcalá, Xyrus X.</creatorcontrib><creatorcontrib>Katz, Laura A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cote-L’Heureux, Auden</au><au>Maurer-Alcalá, Xyrus X.</au><au>Katz, Laura A.</au><au>Feschotte, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events</atitle><jtitle>PLoS genetics</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>e1010239</spage><epage>e1010239</epage><pages>e1010239-e1010239</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35731825</pmid><doi>10.1371/journal.pgen.1010239</doi><orcidid>https://orcid.org/0000-0002-9138-4702</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2022-06, Vol.18 (6), p.e1010239-e1010239 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2690722304 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Anaerobic microorganisms Antibiotic resistance Bacteria Biology and Life Sciences Computer and Information Sciences Eukaryotes Evolutionary genetics Gene families Gene transfer Genes Genetic engineering Genomes Heredity Organelles Photosynthesis Prokaryotes Trees |
title | Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Old%20genes%20in%20new%20places:%20A%20taxon-rich%20analysis%20of%20interdomain%20lateral%20gene%20transfer%20events&rft.jtitle=PLoS%20genetics&rft.au=Cote-L%E2%80%99Heureux,%20Auden&rft.date=2022-06-01&rft.volume=18&rft.issue=6&rft.spage=e1010239&rft.epage=e1010239&rft.pages=e1010239-e1010239&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010239&rft_dat=%3Cproquest_plos_%3E2690722304%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690722304&rft_id=info:pmid/35731825&rft_doaj_id=oai_doaj_org_article_c6423a1b6c81420aaf28c9ef265bf8b9&rfr_iscdi=true |