Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth

Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo , despite deficits within this pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2022-06, Vol.18 (6), p.e1010287-e1010287
Hauptverfasser: Berger, Joachim, Berger, Silke, Currie, Peter D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010287
container_issue 6
container_start_page e1010287
container_title PLoS genetics
container_volume 18
creator Berger, Joachim
Berger, Silke
Currie, Peter D.
description Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo , despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4 . In Drosophila , mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4 geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4 geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3 -deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.
doi_str_mv 10.1371/journal.pgen.1010287
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2690721961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d4529faf2ec244939ffa147d16ae4ce3</doaj_id><sourcerecordid>2680237538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</originalsourceid><addsrcrecordid>eNptkl9v0zAUxSMEYmPwDZCwxAsvKf6XOH5BmipgFUOgUZ4tx75pXRy7OE6nffulNCCGeLJlH__uPdenKF4SvCBMkLe7OKag_WK_gbAgmGDaiEfFOakqVgqO-eO_9mfFs2HYYcyqRoqnxRmrBBOC0PNi9zm2vLSwh2AhZPRtfbP6evkJuXCI_gADyltAZqv3kGJwAa1v3BLliEyMybqgM6D-LnauTc4jHSzqnUkxj-3oAQXItzH9QJsUb_P2efGk036AF_N6UXz_8H69vCqvv3xcLS-vS8MZy6UQtqVYCipFw4SpcW1b0tDJRdMa0jIhbSuZabWsNGjOjKknJ8JiaXnHKGEXxasTd-_joOYxDYrWEgtKZH1UrE4KG_VO7ZPrdbpTUTv16yCmjdIpO-NBWV5R2emOgqGcSya7ThMuLKk1cANsYr2bq41tD9ZMQ0zaP4A-vAluqzbxoCStmoaICfBmBqT4c4Qhq94NBrzXAeJ47LvBlImKNZP09T_S_7vjJ9X0EcOQoPvTDMHqGJ3fr9QxOmqODrsHGn245g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690721961</pqid></control><display><type>article</type><title>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Berger, Joachim ; Berger, Silke ; Currie, Peter D.</creator><contributor>Talbot, Jared</contributor><creatorcontrib>Berger, Joachim ; Berger, Silke ; Currie, Peter D. ; Talbot, Jared</creatorcontrib><description>Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo , despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4 . In Drosophila , mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4 geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4 geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3 -deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010287</identifier><identifier>PMID: 35737712</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Actin ; Biology and Life Sciences ; Body size ; Danio rerio ; Deficient mutant ; Evolution ; Filaments ; Genetic analysis ; Genetic screening ; Genotype &amp; phenotype ; Kinases ; Medicine and Health Sciences ; Muscle contraction ; Musculoskeletal system ; Mutation ; Myofibrils ; Myosin ; Nonsense mutation ; Proteins ; Research and Analysis Methods ; Sarcomeres ; Siblings ; Skeletal muscle ; Tubulin</subject><ispartof>PLoS genetics, 2022-06, Vol.18 (6), p.e1010287-e1010287</ispartof><rights>2022 Berger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Berger et al 2022 Berger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</citedby><cites>FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</cites><orcidid>0000-0001-8874-8862 ; 0000-0002-7859-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Talbot, Jared</contributor><creatorcontrib>Berger, Joachim</creatorcontrib><creatorcontrib>Berger, Silke</creatorcontrib><creatorcontrib>Currie, Peter D.</creatorcontrib><title>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</title><title>PLoS genetics</title><description>Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo , despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4 . In Drosophila , mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4 geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4 geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3 -deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.</description><subject>Actin</subject><subject>Biology and Life Sciences</subject><subject>Body size</subject><subject>Danio rerio</subject><subject>Deficient mutant</subject><subject>Evolution</subject><subject>Filaments</subject><subject>Genetic analysis</subject><subject>Genetic screening</subject><subject>Genotype &amp; phenotype</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Muscle contraction</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myofibrils</subject><subject>Myosin</subject><subject>Nonsense mutation</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Sarcomeres</subject><subject>Siblings</subject><subject>Skeletal muscle</subject><subject>Tubulin</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkl9v0zAUxSMEYmPwDZCwxAsvKf6XOH5BmipgFUOgUZ4tx75pXRy7OE6nffulNCCGeLJlH__uPdenKF4SvCBMkLe7OKag_WK_gbAgmGDaiEfFOakqVgqO-eO_9mfFs2HYYcyqRoqnxRmrBBOC0PNi9zm2vLSwh2AhZPRtfbP6evkJuXCI_gADyltAZqv3kGJwAa1v3BLliEyMybqgM6D-LnauTc4jHSzqnUkxj-3oAQXItzH9QJsUb_P2efGk036AF_N6UXz_8H69vCqvv3xcLS-vS8MZy6UQtqVYCipFw4SpcW1b0tDJRdMa0jIhbSuZabWsNGjOjKknJ8JiaXnHKGEXxasTd-_joOYxDYrWEgtKZH1UrE4KG_VO7ZPrdbpTUTv16yCmjdIpO-NBWV5R2emOgqGcSya7ThMuLKk1cANsYr2bq41tD9ZMQ0zaP4A-vAluqzbxoCStmoaICfBmBqT4c4Qhq94NBrzXAeJ47LvBlImKNZP09T_S_7vjJ9X0EcOQoPvTDMHqGJ3fr9QxOmqODrsHGn245g</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Berger, Joachim</creator><creator>Berger, Silke</creator><creator>Currie, Peter D.</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8874-8862</orcidid><orcidid>https://orcid.org/0000-0002-7859-545X</orcidid></search><sort><creationdate>20220601</creationdate><title>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</title><author>Berger, Joachim ; Berger, Silke ; Currie, Peter D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Biology and Life Sciences</topic><topic>Body size</topic><topic>Danio rerio</topic><topic>Deficient mutant</topic><topic>Evolution</topic><topic>Filaments</topic><topic>Genetic analysis</topic><topic>Genetic screening</topic><topic>Genotype &amp; phenotype</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Muscle contraction</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myofibrils</topic><topic>Myosin</topic><topic>Nonsense mutation</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Sarcomeres</topic><topic>Siblings</topic><topic>Skeletal muscle</topic><topic>Tubulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Joachim</creatorcontrib><creatorcontrib>Berger, Silke</creatorcontrib><creatorcontrib>Currie, Peter D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Joachim</au><au>Berger, Silke</au><au>Currie, Peter D.</au><au>Talbot, Jared</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</atitle><jtitle>PLoS genetics</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>e1010287</spage><epage>e1010287</epage><pages>e1010287-e1010287</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo , despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4 . In Drosophila , mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4 geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4 geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3 -deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35737712</pmid><doi>10.1371/journal.pgen.1010287</doi><orcidid>https://orcid.org/0000-0001-8874-8862</orcidid><orcidid>https://orcid.org/0000-0002-7859-545X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2022-06, Vol.18 (6), p.e1010287-e1010287
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2690721961
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Actin
Biology and Life Sciences
Body size
Danio rerio
Deficient mutant
Evolution
Filaments
Genetic analysis
Genetic screening
Genotype & phenotype
Kinases
Medicine and Health Sciences
Muscle contraction
Musculoskeletal system
Mutation
Myofibrils
Myosin
Nonsense mutation
Proteins
Research and Analysis Methods
Sarcomeres
Siblings
Skeletal muscle
Tubulin
title Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mob4-dependent%20STRIPAK%20involves%20the%20chaperonin%20TRiC%20to%20coordinate%20myofibril%20and%20microtubule%20network%20growth&rft.jtitle=PLoS%20genetics&rft.au=Berger,%20Joachim&rft.date=2022-06-01&rft.volume=18&rft.issue=6&rft.spage=e1010287&rft.epage=e1010287&rft.pages=e1010287-e1010287&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010287&rft_dat=%3Cproquest_plos_%3E2680237538%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690721961&rft_id=info:pmid/35737712&rft_doaj_id=oai_doaj_org_article_d4529faf2ec244939ffa147d16ae4ce3&rfr_iscdi=true