Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth
Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo , despite deficits within this pro...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2022-06, Vol.18 (6), p.e1010287-e1010287 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010287 |
---|---|
container_issue | 6 |
container_start_page | e1010287 |
container_title | PLoS genetics |
container_volume | 18 |
creator | Berger, Joachim Berger, Silke Currie, Peter D. |
description | Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly
in vivo
, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in
mob4
. In
Drosophila
,
mob4
has been reported to play a role in spindle focusing as well as neurite branching and in planarians
mob4
was implemented in body size regulation. In contrast, zebrafish
mob4
geh
mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of
mob4
leads to a reduction in the amount of myofibril, transgenic expression of
mob4
triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally,
mob4
geh
features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for
strn3
-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis. |
doi_str_mv | 10.1371/journal.pgen.1010287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2690721961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d4529faf2ec244939ffa147d16ae4ce3</doaj_id><sourcerecordid>2680237538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</originalsourceid><addsrcrecordid>eNptkl9v0zAUxSMEYmPwDZCwxAsvKf6XOH5BmipgFUOgUZ4tx75pXRy7OE6nffulNCCGeLJlH__uPdenKF4SvCBMkLe7OKag_WK_gbAgmGDaiEfFOakqVgqO-eO_9mfFs2HYYcyqRoqnxRmrBBOC0PNi9zm2vLSwh2AhZPRtfbP6evkJuXCI_gADyltAZqv3kGJwAa1v3BLliEyMybqgM6D-LnauTc4jHSzqnUkxj-3oAQXItzH9QJsUb_P2efGk036AF_N6UXz_8H69vCqvv3xcLS-vS8MZy6UQtqVYCipFw4SpcW1b0tDJRdMa0jIhbSuZabWsNGjOjKknJ8JiaXnHKGEXxasTd-_joOYxDYrWEgtKZH1UrE4KG_VO7ZPrdbpTUTv16yCmjdIpO-NBWV5R2emOgqGcSya7ThMuLKk1cANsYr2bq41tD9ZMQ0zaP4A-vAluqzbxoCStmoaICfBmBqT4c4Qhq94NBrzXAeJ47LvBlImKNZP09T_S_7vjJ9X0EcOQoPvTDMHqGJ3fr9QxOmqODrsHGn245g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690721961</pqid></control><display><type>article</type><title>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Berger, Joachim ; Berger, Silke ; Currie, Peter D.</creator><contributor>Talbot, Jared</contributor><creatorcontrib>Berger, Joachim ; Berger, Silke ; Currie, Peter D. ; Talbot, Jared</creatorcontrib><description>Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly
in vivo
, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in
mob4
. In
Drosophila
,
mob4
has been reported to play a role in spindle focusing as well as neurite branching and in planarians
mob4
was implemented in body size regulation. In contrast, zebrafish
mob4
geh
mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of
mob4
leads to a reduction in the amount of myofibril, transgenic expression of
mob4
triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally,
mob4
geh
features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for
strn3
-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010287</identifier><identifier>PMID: 35737712</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Actin ; Biology and Life Sciences ; Body size ; Danio rerio ; Deficient mutant ; Evolution ; Filaments ; Genetic analysis ; Genetic screening ; Genotype & phenotype ; Kinases ; Medicine and Health Sciences ; Muscle contraction ; Musculoskeletal system ; Mutation ; Myofibrils ; Myosin ; Nonsense mutation ; Proteins ; Research and Analysis Methods ; Sarcomeres ; Siblings ; Skeletal muscle ; Tubulin</subject><ispartof>PLoS genetics, 2022-06, Vol.18 (6), p.e1010287-e1010287</ispartof><rights>2022 Berger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Berger et al 2022 Berger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</citedby><cites>FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</cites><orcidid>0000-0001-8874-8862 ; 0000-0002-7859-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Talbot, Jared</contributor><creatorcontrib>Berger, Joachim</creatorcontrib><creatorcontrib>Berger, Silke</creatorcontrib><creatorcontrib>Currie, Peter D.</creatorcontrib><title>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</title><title>PLoS genetics</title><description>Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly
in vivo
, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in
mob4
. In
Drosophila
,
mob4
has been reported to play a role in spindle focusing as well as neurite branching and in planarians
mob4
was implemented in body size regulation. In contrast, zebrafish
mob4
geh
mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of
mob4
leads to a reduction in the amount of myofibril, transgenic expression of
mob4
triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally,
mob4
geh
features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for
strn3
-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.</description><subject>Actin</subject><subject>Biology and Life Sciences</subject><subject>Body size</subject><subject>Danio rerio</subject><subject>Deficient mutant</subject><subject>Evolution</subject><subject>Filaments</subject><subject>Genetic analysis</subject><subject>Genetic screening</subject><subject>Genotype & phenotype</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Muscle contraction</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myofibrils</subject><subject>Myosin</subject><subject>Nonsense mutation</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Sarcomeres</subject><subject>Siblings</subject><subject>Skeletal muscle</subject><subject>Tubulin</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkl9v0zAUxSMEYmPwDZCwxAsvKf6XOH5BmipgFUOgUZ4tx75pXRy7OE6nffulNCCGeLJlH__uPdenKF4SvCBMkLe7OKag_WK_gbAgmGDaiEfFOakqVgqO-eO_9mfFs2HYYcyqRoqnxRmrBBOC0PNi9zm2vLSwh2AhZPRtfbP6evkJuXCI_gADyltAZqv3kGJwAa1v3BLliEyMybqgM6D-LnauTc4jHSzqnUkxj-3oAQXItzH9QJsUb_P2efGk036AF_N6UXz_8H69vCqvv3xcLS-vS8MZy6UQtqVYCipFw4SpcW1b0tDJRdMa0jIhbSuZabWsNGjOjKknJ8JiaXnHKGEXxasTd-_joOYxDYrWEgtKZH1UrE4KG_VO7ZPrdbpTUTv16yCmjdIpO-NBWV5R2emOgqGcSya7ThMuLKk1cANsYr2bq41tD9ZMQ0zaP4A-vAluqzbxoCStmoaICfBmBqT4c4Qhq94NBrzXAeJ47LvBlImKNZP09T_S_7vjJ9X0EcOQoPvTDMHqGJ3fr9QxOmqODrsHGn245g</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Berger, Joachim</creator><creator>Berger, Silke</creator><creator>Currie, Peter D.</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8874-8862</orcidid><orcidid>https://orcid.org/0000-0002-7859-545X</orcidid></search><sort><creationdate>20220601</creationdate><title>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</title><author>Berger, Joachim ; Berger, Silke ; Currie, Peter D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-77db2097297837c606db1824048bc1b379db93cba95aea43cc67127d09d4f3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Biology and Life Sciences</topic><topic>Body size</topic><topic>Danio rerio</topic><topic>Deficient mutant</topic><topic>Evolution</topic><topic>Filaments</topic><topic>Genetic analysis</topic><topic>Genetic screening</topic><topic>Genotype & phenotype</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Muscle contraction</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myofibrils</topic><topic>Myosin</topic><topic>Nonsense mutation</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Sarcomeres</topic><topic>Siblings</topic><topic>Skeletal muscle</topic><topic>Tubulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Joachim</creatorcontrib><creatorcontrib>Berger, Silke</creatorcontrib><creatorcontrib>Currie, Peter D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Joachim</au><au>Berger, Silke</au><au>Currie, Peter D.</au><au>Talbot, Jared</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth</atitle><jtitle>PLoS genetics</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>e1010287</spage><epage>e1010287</epage><pages>e1010287-e1010287</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly
in vivo
, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in
mob4
. In
Drosophila
,
mob4
has been reported to play a role in spindle focusing as well as neurite branching and in planarians
mob4
was implemented in body size regulation. In contrast, zebrafish
mob4
geh
mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of
mob4
leads to a reduction in the amount of myofibril, transgenic expression of
mob4
triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally,
mob4
geh
features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for
strn3
-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35737712</pmid><doi>10.1371/journal.pgen.1010287</doi><orcidid>https://orcid.org/0000-0001-8874-8862</orcidid><orcidid>https://orcid.org/0000-0002-7859-545X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2022-06, Vol.18 (6), p.e1010287-e1010287 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2690721961 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Actin Biology and Life Sciences Body size Danio rerio Deficient mutant Evolution Filaments Genetic analysis Genetic screening Genotype & phenotype Kinases Medicine and Health Sciences Muscle contraction Musculoskeletal system Mutation Myofibrils Myosin Nonsense mutation Proteins Research and Analysis Methods Sarcomeres Siblings Skeletal muscle Tubulin |
title | Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mob4-dependent%20STRIPAK%20involves%20the%20chaperonin%20TRiC%20to%20coordinate%20myofibril%20and%20microtubule%20network%20growth&rft.jtitle=PLoS%20genetics&rft.au=Berger,%20Joachim&rft.date=2022-06-01&rft.volume=18&rft.issue=6&rft.spage=e1010287&rft.epage=e1010287&rft.pages=e1010287-e1010287&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010287&rft_dat=%3Cproquest_plos_%3E2680237538%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690721961&rft_id=info:pmid/35737712&rft_doaj_id=oai_doaj_org_article_d4529faf2ec244939ffa147d16ae4ce3&rfr_iscdi=true |