The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study
This paper presents a systematic study of the effects of hyperspectral pixel dimensionality reduction on the pixel classification task. We use five dimensionality reduction methods—PCA, KPCA, ICA, AE, and DAE—to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used t...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-07, Vol.17 (7), p.e0269174-e0269174 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0269174 |
---|---|
container_issue | 7 |
container_start_page | e0269174 |
container_title | PloS one |
container_volume | 17 |
creator | Mantripragada, Kiran Dao, Phuong D. He, Yuhong Qureshi, Faisal Z. |
description | This paper presents a systematic study of the effects of hyperspectral pixel dimensionality reduction on the pixel classification task. We use five dimensionality reduction methods—PCA, KPCA, ICA, AE, and DAE—to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used to perform pixel classifications. Pixel classification accuracies together with compression method, compression rates, and reconstruction errors provide a new lens to study the suitability of a compression method for the task of pixel classification. We use three high-resolution hyperspectral image datasets, representing three common landscape types (i.e. urban, transitional suburban, and forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability; however, when compression rates are more than 90% these methods show lower classification scores. AE and DAE methods post better classification accuracy at 95% compression rate, however their performance drops as compression rate approaches 97%. Our results suggest that both the compression method and the compression rate are important considerations when designing a hyperspectral pixel classification pipeline. |
doi_str_mv | 10.1371/journal.pone.0269174 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2689599428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710213176</galeid><doaj_id>oai_doaj_org_article_77015b7a3f1f4938b9cb033597e640fb</doaj_id><sourcerecordid>A710213176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ef7aca9d781695c0dbdab1308579c505734fbb572e3e4a533896caef8d67d6613</originalsourceid><addsrcrecordid>eNptktuKFDEQhhtR3HX1DQQbBPFmxhw6Jy-EYfGwsODNeh3SSWUmQ6bTJt2L8_Z2O-2yI0IgleTj_6sqVVWvMVpjKvCHfRpzZ-K6Tx2sEeEKi-ZJdYkVJStOEH36KL6oXpSyR4hRyfnz6oIySZtGkMvK3e2gBu_BDqVOvi79FGUTaxcO0JWQJoswHOsMbrTDdKyntTv2kB_IPvyCWNtoSgk-WDNTH-tNbU2BugyjO76snnkTC7xa9qvqx5fPd9ffVrffv95cb25XtlFkWIEXxhrlhMRcMYtc60yLKZJMKMsQE7TxbcsEAQqNYZRKxa0BLx0XjnNMr6o3J90-pqKXBhVNuFRMqYbIibg5ES6Zve5zOJh81MkE_eci5a02eQg2ghYCYdYKQz32jaKyVbZFlDIlgDfIt5PWp8VtbA_gLHRzO85Ez1-6sNPbdK8VkYRJMQm8XwRy-jlCGfQhFAsxmg7SeMqbcyHYjL79B_1_dQu1NVMBofNp8rWzqN4IjAimWPCJeveI2oGJw66kOM7_Vs7B5gTanErJ4B9qw0jPM_g3CT3PoF5mkP4G_0zQHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689599428</pqid></control><display><type>article</type><title>The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mantripragada, Kiran ; Dao, Phuong D. ; He, Yuhong ; Qureshi, Faisal Z.</creator><creatorcontrib>Mantripragada, Kiran ; Dao, Phuong D. ; He, Yuhong ; Qureshi, Faisal Z.</creatorcontrib><description>This paper presents a systematic study of the effects of hyperspectral pixel dimensionality reduction on the pixel classification task. We use five dimensionality reduction methods—PCA, KPCA, ICA, AE, and DAE—to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used to perform pixel classifications. Pixel classification accuracies together with compression method, compression rates, and reconstruction errors provide a new lens to study the suitability of a compression method for the task of pixel classification. We use three high-resolution hyperspectral image datasets, representing three common landscape types (i.e. urban, transitional suburban, and forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability; however, when compression rates are more than 90% these methods show lower classification scores. AE and DAE methods post better classification accuracy at 95% compression rate, however their performance drops as compression rate approaches 97%. Our results suggest that both the compression method and the compression rate are important considerations when designing a hyperspectral pixel classification pipeline.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0269174</identifier><identifier>PMID: 35834472</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biology and Life Sciences ; Case reports ; Classification ; Compression ; Computer and Information Sciences ; Data compression ; Datasets ; Ecology and Environmental Sciences ; Ecosystem models ; Evaluation ; Hyperspectral imaging ; Identification and classification ; Image classification ; Image resolution ; Laboratories ; Methods ; Physical Sciences ; Pixels ; Reduction ; Remote sensing ; Research and Analysis Methods ; Signal reconstruction ; Wavelet transforms</subject><ispartof>PloS one, 2022-07, Vol.17 (7), p.e0269174-e0269174</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Mantripragada et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Mantripragada et al 2022 Mantripragada et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-ef7aca9d781695c0dbdab1308579c505734fbb572e3e4a533896caef8d67d6613</citedby><cites>FETCH-LOGICAL-c492t-ef7aca9d781695c0dbdab1308579c505734fbb572e3e4a533896caef8d67d6613</cites><orcidid>0000-0002-3377-7591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids></links><search><creatorcontrib>Mantripragada, Kiran</creatorcontrib><creatorcontrib>Dao, Phuong D.</creatorcontrib><creatorcontrib>He, Yuhong</creatorcontrib><creatorcontrib>Qureshi, Faisal Z.</creatorcontrib><title>The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study</title><title>PloS one</title><description>This paper presents a systematic study of the effects of hyperspectral pixel dimensionality reduction on the pixel classification task. We use five dimensionality reduction methods—PCA, KPCA, ICA, AE, and DAE—to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used to perform pixel classifications. Pixel classification accuracies together with compression method, compression rates, and reconstruction errors provide a new lens to study the suitability of a compression method for the task of pixel classification. We use three high-resolution hyperspectral image datasets, representing three common landscape types (i.e. urban, transitional suburban, and forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability; however, when compression rates are more than 90% these methods show lower classification scores. AE and DAE methods post better classification accuracy at 95% compression rate, however their performance drops as compression rate approaches 97%. Our results suggest that both the compression method and the compression rate are important considerations when designing a hyperspectral pixel classification pipeline.</description><subject>Biology and Life Sciences</subject><subject>Case reports</subject><subject>Classification</subject><subject>Compression</subject><subject>Computer and Information Sciences</subject><subject>Data compression</subject><subject>Datasets</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem models</subject><subject>Evaluation</subject><subject>Hyperspectral imaging</subject><subject>Identification and classification</subject><subject>Image classification</subject><subject>Image resolution</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Physical Sciences</subject><subject>Pixels</subject><subject>Reduction</subject><subject>Remote sensing</subject><subject>Research and Analysis Methods</subject><subject>Signal reconstruction</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptktuKFDEQhhtR3HX1DQQbBPFmxhw6Jy-EYfGwsODNeh3SSWUmQ6bTJt2L8_Z2O-2yI0IgleTj_6sqVVWvMVpjKvCHfRpzZ-K6Tx2sEeEKi-ZJdYkVJStOEH36KL6oXpSyR4hRyfnz6oIySZtGkMvK3e2gBu_BDqVOvi79FGUTaxcO0JWQJoswHOsMbrTDdKyntTv2kB_IPvyCWNtoSgk-WDNTH-tNbU2BugyjO76snnkTC7xa9qvqx5fPd9ffVrffv95cb25XtlFkWIEXxhrlhMRcMYtc60yLKZJMKMsQE7TxbcsEAQqNYZRKxa0BLx0XjnNMr6o3J90-pqKXBhVNuFRMqYbIibg5ES6Zve5zOJh81MkE_eci5a02eQg2ghYCYdYKQz32jaKyVbZFlDIlgDfIt5PWp8VtbA_gLHRzO85Ez1-6sNPbdK8VkYRJMQm8XwRy-jlCGfQhFAsxmg7SeMqbcyHYjL79B_1_dQu1NVMBofNp8rWzqN4IjAimWPCJeveI2oGJw66kOM7_Vs7B5gTanErJ4B9qw0jPM_g3CT3PoF5mkP4G_0zQHA</recordid><startdate>20220714</startdate><enddate>20220714</enddate><creator>Mantripragada, Kiran</creator><creator>Dao, Phuong D.</creator><creator>He, Yuhong</creator><creator>Qureshi, Faisal Z.</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3377-7591</orcidid></search><sort><creationdate>20220714</creationdate><title>The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study</title><author>Mantripragada, Kiran ; Dao, Phuong D. ; He, Yuhong ; Qureshi, Faisal Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ef7aca9d781695c0dbdab1308579c505734fbb572e3e4a533896caef8d67d6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biology and Life Sciences</topic><topic>Case reports</topic><topic>Classification</topic><topic>Compression</topic><topic>Computer and Information Sciences</topic><topic>Data compression</topic><topic>Datasets</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem models</topic><topic>Evaluation</topic><topic>Hyperspectral imaging</topic><topic>Identification and classification</topic><topic>Image classification</topic><topic>Image resolution</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Physical Sciences</topic><topic>Pixels</topic><topic>Reduction</topic><topic>Remote sensing</topic><topic>Research and Analysis Methods</topic><topic>Signal reconstruction</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mantripragada, Kiran</creatorcontrib><creatorcontrib>Dao, Phuong D.</creatorcontrib><creatorcontrib>He, Yuhong</creatorcontrib><creatorcontrib>Qureshi, Faisal Z.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mantripragada, Kiran</au><au>Dao, Phuong D.</au><au>He, Yuhong</au><au>Qureshi, Faisal Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study</atitle><jtitle>PloS one</jtitle><date>2022-07-14</date><risdate>2022</risdate><volume>17</volume><issue>7</issue><spage>e0269174</spage><epage>e0269174</epage><pages>e0269174-e0269174</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper presents a systematic study of the effects of hyperspectral pixel dimensionality reduction on the pixel classification task. We use five dimensionality reduction methods—PCA, KPCA, ICA, AE, and DAE—to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used to perform pixel classifications. Pixel classification accuracies together with compression method, compression rates, and reconstruction errors provide a new lens to study the suitability of a compression method for the task of pixel classification. We use three high-resolution hyperspectral image datasets, representing three common landscape types (i.e. urban, transitional suburban, and forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability; however, when compression rates are more than 90% these methods show lower classification scores. AE and DAE methods post better classification accuracy at 95% compression rate, however their performance drops as compression rate approaches 97%. Our results suggest that both the compression method and the compression rate are important considerations when designing a hyperspectral pixel classification pipeline.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35834472</pmid><doi>10.1371/journal.pone.0269174</doi><orcidid>https://orcid.org/0000-0002-3377-7591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-07, Vol.17 (7), p.e0269174-e0269174 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2689599428 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biology and Life Sciences Case reports Classification Compression Computer and Information Sciences Data compression Datasets Ecology and Environmental Sciences Ecosystem models Evaluation Hyperspectral imaging Identification and classification Image classification Image resolution Laboratories Methods Physical Sciences Pixels Reduction Remote sensing Research and Analysis Methods Signal reconstruction Wavelet transforms |
title | The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20spectral%20dimensionality%20reduction%20on%20hyperspectral%20pixel%20classification:%20A%20case%20study&rft.jtitle=PloS%20one&rft.au=Mantripragada,%20Kiran&rft.date=2022-07-14&rft.volume=17&rft.issue=7&rft.spage=e0269174&rft.epage=e0269174&rft.pages=e0269174-e0269174&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0269174&rft_dat=%3Cgale_plos_%3EA710213176%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689599428&rft_id=info:pmid/35834472&rft_galeid=A710213176&rft_doaj_id=oai_doaj_org_article_77015b7a3f1f4938b9cb033597e640fb&rfr_iscdi=true |