Using natural language processing to identify acute care patients who lack advance directives, decisional capacity, and surrogate decision makers

The prevalence of patients who are Incapacitated with No Evident Advance Directives or Surrogates (INEADS) remains unknown because such data are not routinely captured in structured electronic health records. This study sought to develop and validate a natural language processing (NLP) algorithm to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-07, Vol.17 (7), p.e0270220-e0270220
Hauptverfasser: Song, Jiyoun, Topaz, Maxim, Landau, Aviv Y, Klitzman, Robert, Shang, Jingjing, Stone, Patricia, McDonald, Margaret, Cohen, Bevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prevalence of patients who are Incapacitated with No Evident Advance Directives or Surrogates (INEADS) remains unknown because such data are not routinely captured in structured electronic health records. This study sought to develop and validate a natural language processing (NLP) algorithm to identify information related to being INEADS from clinical notes. We used a publicly available dataset of critical care patients from 2001 through 2012 at a United States academic medical center, which contained 418,393 relevant clinical notes for 23,904 adult admissions. We developed 17 subcategories indicating reduced or elevated potential for being INEADS, and created a vocabulary of terms and expressions within each. We used an NLP application to create a language model and expand these vocabularies. The NLP algorithm was validated against gold standard manual review of 300 notes and showed good performance overall (F-score = 0.83). More than 80% of admissions had notes containing information in at least one subcategory. Thirty percent (n = 7,134) contained at least one of five social subcategories indicating elevated potential for being INEADS, and
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0270220