Horizontal connectivity in V1: Prediction of coherence in contour and motion integration

This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-07, Vol.17 (7), p.e0268351-e0268351
Hauptverfasser: Le Bec, Benoit, Troncoso, Xoana G, Desbois, Christophe, Passarelli, Yannick, Baudot, Pierre, Monier, Cyril, Pananceau, Marc, Frégnac, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0268351
container_issue 7
container_start_page e0268351
container_title PloS one
container_volume 17
creator Le Bec, Benoit
Troncoso, Xoana G
Desbois, Christophe
Passarelli, Yannick
Baudot, Pierre
Monier, Cyril
Pananceau, Marc
Frégnac, Yves
description This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150–250°/s when it matches the propagation speed of horizontal connectivity (0.15–0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal “prediction” wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.
doi_str_mv 10.1371/journal.pone.0268351
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686848038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A709596910</galeid><doaj_id>oai_doaj_org_article_5db5e0e863294f898c86c70c9fffc7c6</doaj_id><sourcerecordid>A709596910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-aa6cd80f5a55aeaad052e43cc023c10e710bdb62839859bf1fe7ca2c50d7ae0f3</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3HX1HwgOCOJetCaTSSbZC6EsaguFFT8W70KaOWlTpklNZorrrzezHWVn2QvJRcLJc96cvMnJspcYTTGp8Lut74JTzXTvHUxRwTih-FF2igUpJqxA5PGd9Un2LMYtQpRwxp5mJ4TylFHQ0-zH3Af727tWNbn2zoFu7cG2N7l1-TW-yD8HqG2KeZd7k4gNBHAa-u2Et6mGXLk63_lbxLoW1kH16-fZE6OaCC-G-Sz7_vHDt8v5ZHn1aXE5W050hUg7UYrpmiNDFaUKlKoRLaAkWqOCaIygwmhVr1jBieBUrAw2UGlVaIrqSgEy5Cx7ddTdNz7KwZQokx-MlxwRnojFkai92sp9sDsVbqRXVt4GfFhLFVqrG5C0XlFAwBkpRGm44JqzVKcWxhhdaZa03g-ndasd1BpcG1QzEh3vOLuRa3-QomCixDgJnB8FNvfS5rOl7GOpYooEKw89-3Y4LPifHcRW7mzU0DTKge9u71hVmKGiSujre-jDTgzUWqXLWmd8qlH3onJWIUEFExglavoAlUYNO5seHYxN8VHC-Sih_xjwq12rLka5-Prl_9mr6zH75g67AdW0m-ibrv9ecQyWR1AHH2MA889ZjGTfLH_dkH2zyKFZyB8JqQV4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686848038</pqid></control><display><type>article</type><title>Horizontal connectivity in V1: Prediction of coherence in contour and motion integration</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Le Bec, Benoit ; Troncoso, Xoana G ; Desbois, Christophe ; Passarelli, Yannick ; Baudot, Pierre ; Monier, Cyril ; Pananceau, Marc ; Frégnac, Yves</creator><contributor>Charpier, Stéphane</contributor><creatorcontrib>Le Bec, Benoit ; Troncoso, Xoana G ; Desbois, Christophe ; Passarelli, Yannick ; Baudot, Pierre ; Monier, Cyril ; Pananceau, Marc ; Frégnac, Yves ; Charpier, Stéphane</creatorcontrib><description>This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150–250°/s when it matches the propagation speed of horizontal connectivity (0.15–0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal “prediction” wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0268351</identifier><identifier>PMID: 35802625</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Attention ; Axis movements ; Biology and Life Sciences ; Cognitive Sciences ; Coherence ; Computer and Information Sciences ; Context ; Contours ; Eye movements ; Form Perception ; Human motion ; Hypotheses ; Latency ; Life Sciences ; Motion ; Motion Perception ; Motion perception (Vision) ; Neurobiology ; Neurons and Cognition ; Orientation ; Orientation behavior ; Photic Stimulation ; Physical Sciences ; Physiological aspects ; Psychological aspects ; Psychology and behavior ; Psychophysics ; Saccadic eye movements ; Social Sciences ; Substrates ; Visual Cortex ; Visual effects ; Visual Pathways ; Visual perception ; Wave propagation</subject><ispartof>PloS one, 2022-07, Vol.17 (7), p.e0268351-e0268351</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Le Bec et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2022 Le Bec et al 2022 Le Bec et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-aa6cd80f5a55aeaad052e43cc023c10e710bdb62839859bf1fe7ca2c50d7ae0f3</citedby><cites>FETCH-LOGICAL-c703t-aa6cd80f5a55aeaad052e43cc023c10e710bdb62839859bf1fe7ca2c50d7ae0f3</cites><orcidid>0000-0001-8304-7741 ; 0000-0001-7343-1272 ; 0000-0003-1481-8252 ; 0000-0002-5336-820X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269411/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269411/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03850964$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Charpier, Stéphane</contributor><creatorcontrib>Le Bec, Benoit</creatorcontrib><creatorcontrib>Troncoso, Xoana G</creatorcontrib><creatorcontrib>Desbois, Christophe</creatorcontrib><creatorcontrib>Passarelli, Yannick</creatorcontrib><creatorcontrib>Baudot, Pierre</creatorcontrib><creatorcontrib>Monier, Cyril</creatorcontrib><creatorcontrib>Pananceau, Marc</creatorcontrib><creatorcontrib>Frégnac, Yves</creatorcontrib><title>Horizontal connectivity in V1: Prediction of coherence in contour and motion integration</title><title>PloS one</title><description>This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150–250°/s when it matches the propagation speed of horizontal connectivity (0.15–0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal “prediction” wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.</description><subject>Attention</subject><subject>Axis movements</subject><subject>Biology and Life Sciences</subject><subject>Cognitive Sciences</subject><subject>Coherence</subject><subject>Computer and Information Sciences</subject><subject>Context</subject><subject>Contours</subject><subject>Eye movements</subject><subject>Form Perception</subject><subject>Human motion</subject><subject>Hypotheses</subject><subject>Latency</subject><subject>Life Sciences</subject><subject>Motion</subject><subject>Motion Perception</subject><subject>Motion perception (Vision)</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Orientation</subject><subject>Orientation behavior</subject><subject>Photic Stimulation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Psychological aspects</subject><subject>Psychology and behavior</subject><subject>Psychophysics</subject><subject>Saccadic eye movements</subject><subject>Social Sciences</subject><subject>Substrates</subject><subject>Visual Cortex</subject><subject>Visual effects</subject><subject>Visual Pathways</subject><subject>Visual perception</subject><subject>Wave propagation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3HX1HwgOCOJetCaTSSbZC6EsaguFFT8W70KaOWlTpklNZorrrzezHWVn2QvJRcLJc96cvMnJspcYTTGp8Lut74JTzXTvHUxRwTih-FF2igUpJqxA5PGd9Un2LMYtQpRwxp5mJ4TylFHQ0-zH3Af727tWNbn2zoFu7cG2N7l1-TW-yD8HqG2KeZd7k4gNBHAa-u2Et6mGXLk63_lbxLoW1kH16-fZE6OaCC-G-Sz7_vHDt8v5ZHn1aXE5W050hUg7UYrpmiNDFaUKlKoRLaAkWqOCaIygwmhVr1jBieBUrAw2UGlVaIrqSgEy5Cx7ddTdNz7KwZQokx-MlxwRnojFkai92sp9sDsVbqRXVt4GfFhLFVqrG5C0XlFAwBkpRGm44JqzVKcWxhhdaZa03g-ndasd1BpcG1QzEh3vOLuRa3-QomCixDgJnB8FNvfS5rOl7GOpYooEKw89-3Y4LPifHcRW7mzU0DTKge9u71hVmKGiSujre-jDTgzUWqXLWmd8qlH3onJWIUEFExglavoAlUYNO5seHYxN8VHC-Sih_xjwq12rLka5-Prl_9mr6zH75g67AdW0m-ibrv9ecQyWR1AHH2MA889ZjGTfLH_dkH2zyKFZyB8JqQV4</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Le Bec, Benoit</creator><creator>Troncoso, Xoana G</creator><creator>Desbois, Christophe</creator><creator>Passarelli, Yannick</creator><creator>Baudot, Pierre</creator><creator>Monier, Cyril</creator><creator>Pananceau, Marc</creator><creator>Frégnac, Yves</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8304-7741</orcidid><orcidid>https://orcid.org/0000-0001-7343-1272</orcidid><orcidid>https://orcid.org/0000-0003-1481-8252</orcidid><orcidid>https://orcid.org/0000-0002-5336-820X</orcidid></search><sort><creationdate>20220708</creationdate><title>Horizontal connectivity in V1: Prediction of coherence in contour and motion integration</title><author>Le Bec, Benoit ; Troncoso, Xoana G ; Desbois, Christophe ; Passarelli, Yannick ; Baudot, Pierre ; Monier, Cyril ; Pananceau, Marc ; Frégnac, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-aa6cd80f5a55aeaad052e43cc023c10e710bdb62839859bf1fe7ca2c50d7ae0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention</topic><topic>Axis movements</topic><topic>Biology and Life Sciences</topic><topic>Cognitive Sciences</topic><topic>Coherence</topic><topic>Computer and Information Sciences</topic><topic>Context</topic><topic>Contours</topic><topic>Eye movements</topic><topic>Form Perception</topic><topic>Human motion</topic><topic>Hypotheses</topic><topic>Latency</topic><topic>Life Sciences</topic><topic>Motion</topic><topic>Motion Perception</topic><topic>Motion perception (Vision)</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Orientation</topic><topic>Orientation behavior</topic><topic>Photic Stimulation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Psychological aspects</topic><topic>Psychology and behavior</topic><topic>Psychophysics</topic><topic>Saccadic eye movements</topic><topic>Social Sciences</topic><topic>Substrates</topic><topic>Visual Cortex</topic><topic>Visual effects</topic><topic>Visual Pathways</topic><topic>Visual perception</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Bec, Benoit</creatorcontrib><creatorcontrib>Troncoso, Xoana G</creatorcontrib><creatorcontrib>Desbois, Christophe</creatorcontrib><creatorcontrib>Passarelli, Yannick</creatorcontrib><creatorcontrib>Baudot, Pierre</creatorcontrib><creatorcontrib>Monier, Cyril</creatorcontrib><creatorcontrib>Pananceau, Marc</creatorcontrib><creatorcontrib>Frégnac, Yves</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Bec, Benoit</au><au>Troncoso, Xoana G</au><au>Desbois, Christophe</au><au>Passarelli, Yannick</au><au>Baudot, Pierre</au><au>Monier, Cyril</au><au>Pananceau, Marc</au><au>Frégnac, Yves</au><au>Charpier, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal connectivity in V1: Prediction of coherence in contour and motion integration</atitle><jtitle>PloS one</jtitle><date>2022-07-08</date><risdate>2022</risdate><volume>17</volume><issue>7</issue><spage>e0268351</spage><epage>e0268351</epage><pages>e0268351-e0268351</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150–250°/s when it matches the propagation speed of horizontal connectivity (0.15–0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal “prediction” wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35802625</pmid><doi>10.1371/journal.pone.0268351</doi><tpages>e0268351</tpages><orcidid>https://orcid.org/0000-0001-8304-7741</orcidid><orcidid>https://orcid.org/0000-0001-7343-1272</orcidid><orcidid>https://orcid.org/0000-0003-1481-8252</orcidid><orcidid>https://orcid.org/0000-0002-5336-820X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-07, Vol.17 (7), p.e0268351-e0268351
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2686848038
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Attention
Axis movements
Biology and Life Sciences
Cognitive Sciences
Coherence
Computer and Information Sciences
Context
Contours
Eye movements
Form Perception
Human motion
Hypotheses
Latency
Life Sciences
Motion
Motion Perception
Motion perception (Vision)
Neurobiology
Neurons and Cognition
Orientation
Orientation behavior
Photic Stimulation
Physical Sciences
Physiological aspects
Psychological aspects
Psychology and behavior
Psychophysics
Saccadic eye movements
Social Sciences
Substrates
Visual Cortex
Visual effects
Visual Pathways
Visual perception
Wave propagation
title Horizontal connectivity in V1: Prediction of coherence in contour and motion integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20connectivity%20in%20V1:%20Prediction%20of%20coherence%20in%20contour%20and%20motion%20integration&rft.jtitle=PloS%20one&rft.au=Le%20Bec,%20Benoit&rft.date=2022-07-08&rft.volume=17&rft.issue=7&rft.spage=e0268351&rft.epage=e0268351&rft.pages=e0268351-e0268351&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0268351&rft_dat=%3Cgale_plos_%3EA709596910%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686848038&rft_id=info:pmid/35802625&rft_galeid=A709596910&rft_doaj_id=oai_doaj_org_article_5db5e0e863294f898c86c70c9fffc7c6&rfr_iscdi=true