Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex

DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-06, Vol.17 (6), p.e0270165-e0270165
Hauptverfasser: Monsen, Robert C, Maguire, Jon M, DeLeeuw, Lynn W, Chaires, Jonathan B, Trent, John O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0270165
container_issue 6
container_start_page e0270165
container_title PloS one
container_volume 17
creator Monsen, Robert C
Maguire, Jon M
DeLeeuw, Lynn W
Chaires, Jonathan B
Trent, John O
description DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.
doi_str_mv 10.1371/journal.pone.0270165
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686270027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707329720</galeid><doaj_id>oai_doaj_org_article_222165cb4c8246be965eb0eccafe0b5a</doaj_id><sourcerecordid>A707329720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-efb80d89d3da23c17d2f3ecd5c73dc4d4ef3ff5f05ca147da011f1407aa2d25c3</originalsourceid><addsrcrecordid>eNqNk19r1TAYxosobh79BqIFQfSixzRpm9ObwZhzHhgM5lG8C2nypu0hbbokHdu3N8fTjVPZheQi_37vk-TJ-0bR2xQtU0LTL1sz2p7r5WB6WCJMUVrkz6LjtCQ4KTAizw_GR9Er57YI5WRVFC-jI5JTVGKCjqPfX-1Yx7J1wtyCvY-Nil3HtY47o0GMGlzsua3Bt30d-wbipq0bsImxEmzcbM6vN_FgTWd8mF4kNyOXdhw03L2OXiiuHbyZ-kX089v55ux7cnl1sT47vUxEgbFPQFUrJFelJJJjIlIqsSIgZC4okSKTGSiiVK5QLniaUclRmqo0Q5RzLHEuyCJ6v9cdtHFsMsUxXKyK4EnwJRDrPSEN37LBth2398zwlv1dMLZm3PpWaGAY4-CiqDKxwllRQVnkUCEQgitAVc6D1sl02lh1IAX03nI9E53v9G3DanPLSoxwmeVB4NMkYM3NCM6zLngPWvMezLi7N6U5xRnNAvrhH_Tp101UzcMD2l6ZcK7YibJTiijBJQ0JsIiWT1ChSehaETJItWF9FvB5FhAYD3e-5qNzbP3j-v_Zq19z9uMB2wDXvnFGj741vZuD2R4U1jhnQT2anCK2K4AHN9iuANhUACHs3eEHPQY9ZDz5A2xZAaY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686270027</pqid></control><display><type>article</type><title>Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Monsen, Robert C ; Maguire, Jon M ; DeLeeuw, Lynn W ; Chaires, Jonathan B ; Trent, John O</creator><creatorcontrib>Monsen, Robert C ; Maguire, Jon M ; DeLeeuw, Lynn W ; Chaires, Jonathan B ; Trent, John O</creatorcontrib><description>DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0270165</identifier><identifier>PMID: 35709230</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Antimitotic agents ; Antineoplastic agents ; Binding ; Binding sites ; Biology and Life Sciences ; Breast cancer ; Deoxyribonucleic acid ; DNA ; Drug discovery ; Engineering and Technology ; Fluorescence ; Genetic transcription ; Grooves ; Health aspects ; Ligands ; Medicine and Health Sciences ; Pharmaceutical research ; Physical Sciences ; Promoters (Genetics) ; Scaffolds ; Selectivity ; Senescence ; Structure ; Telomerase ; Telomerase reverse transcriptase ; Thermophoresis</subject><ispartof>PloS one, 2022-06, Vol.17 (6), p.e0270165-e0270165</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Monsen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Monsen et al 2022 Monsen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-efb80d89d3da23c17d2f3ecd5c73dc4d4ef3ff5f05ca147da011f1407aa2d25c3</citedby><cites>FETCH-LOGICAL-c622t-efb80d89d3da23c17d2f3ecd5c73dc4d4ef3ff5f05ca147da011f1407aa2d25c3</cites><orcidid>0000-0002-6283-3249 ; 0000-0002-7346-4231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35709230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monsen, Robert C</creatorcontrib><creatorcontrib>Maguire, Jon M</creatorcontrib><creatorcontrib>DeLeeuw, Lynn W</creatorcontrib><creatorcontrib>Chaires, Jonathan B</creatorcontrib><creatorcontrib>Trent, John O</creatorcontrib><title>Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.</description><subject>Affinity</subject><subject>Antimitotic agents</subject><subject>Antineoplastic agents</subject><subject>Binding</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug discovery</subject><subject>Engineering and Technology</subject><subject>Fluorescence</subject><subject>Genetic transcription</subject><subject>Grooves</subject><subject>Health aspects</subject><subject>Ligands</subject><subject>Medicine and Health Sciences</subject><subject>Pharmaceutical research</subject><subject>Physical Sciences</subject><subject>Promoters (Genetics)</subject><subject>Scaffolds</subject><subject>Selectivity</subject><subject>Senescence</subject><subject>Structure</subject><subject>Telomerase</subject><subject>Telomerase reverse transcriptase</subject><subject>Thermophoresis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19r1TAYxosobh79BqIFQfSixzRpm9ObwZhzHhgM5lG8C2nypu0hbbokHdu3N8fTjVPZheQi_37vk-TJ-0bR2xQtU0LTL1sz2p7r5WB6WCJMUVrkz6LjtCQ4KTAizw_GR9Er57YI5WRVFC-jI5JTVGKCjqPfX-1Yx7J1wtyCvY-Nil3HtY47o0GMGlzsua3Bt30d-wbipq0bsImxEmzcbM6vN_FgTWd8mF4kNyOXdhw03L2OXiiuHbyZ-kX089v55ux7cnl1sT47vUxEgbFPQFUrJFelJJJjIlIqsSIgZC4okSKTGSiiVK5QLniaUclRmqo0Q5RzLHEuyCJ6v9cdtHFsMsUxXKyK4EnwJRDrPSEN37LBth2398zwlv1dMLZm3PpWaGAY4-CiqDKxwllRQVnkUCEQgitAVc6D1sl02lh1IAX03nI9E53v9G3DanPLSoxwmeVB4NMkYM3NCM6zLngPWvMezLi7N6U5xRnNAvrhH_Tp101UzcMD2l6ZcK7YibJTiijBJQ0JsIiWT1ChSehaETJItWF9FvB5FhAYD3e-5qNzbP3j-v_Zq19z9uMB2wDXvnFGj741vZuD2R4U1jhnQT2anCK2K4AHN9iuANhUACHs3eEHPQY9ZDz5A2xZAaY</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Monsen, Robert C</creator><creator>Maguire, Jon M</creator><creator>DeLeeuw, Lynn W</creator><creator>Chaires, Jonathan B</creator><creator>Trent, John O</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6283-3249</orcidid><orcidid>https://orcid.org/0000-0002-7346-4231</orcidid></search><sort><creationdate>20220616</creationdate><title>Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex</title><author>Monsen, Robert C ; Maguire, Jon M ; DeLeeuw, Lynn W ; Chaires, Jonathan B ; Trent, John O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-efb80d89d3da23c17d2f3ecd5c73dc4d4ef3ff5f05ca147da011f1407aa2d25c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity</topic><topic>Antimitotic agents</topic><topic>Antineoplastic agents</topic><topic>Binding</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug discovery</topic><topic>Engineering and Technology</topic><topic>Fluorescence</topic><topic>Genetic transcription</topic><topic>Grooves</topic><topic>Health aspects</topic><topic>Ligands</topic><topic>Medicine and Health Sciences</topic><topic>Pharmaceutical research</topic><topic>Physical Sciences</topic><topic>Promoters (Genetics)</topic><topic>Scaffolds</topic><topic>Selectivity</topic><topic>Senescence</topic><topic>Structure</topic><topic>Telomerase</topic><topic>Telomerase reverse transcriptase</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monsen, Robert C</creatorcontrib><creatorcontrib>Maguire, Jon M</creatorcontrib><creatorcontrib>DeLeeuw, Lynn W</creatorcontrib><creatorcontrib>Chaires, Jonathan B</creatorcontrib><creatorcontrib>Trent, John O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsen, Robert C</au><au>Maguire, Jon M</au><au>DeLeeuw, Lynn W</au><au>Chaires, Jonathan B</au><au>Trent, John O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-06-16</date><risdate>2022</risdate><volume>17</volume><issue>6</issue><spage>e0270165</spage><epage>e0270165</epage><pages>e0270165-e0270165</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35709230</pmid><doi>10.1371/journal.pone.0270165</doi><tpages>e0270165</tpages><orcidid>https://orcid.org/0000-0002-6283-3249</orcidid><orcidid>https://orcid.org/0000-0002-7346-4231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-06, Vol.17 (6), p.e0270165-e0270165
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2686270027
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Affinity
Antimitotic agents
Antineoplastic agents
Binding
Binding sites
Biology and Life Sciences
Breast cancer
Deoxyribonucleic acid
DNA
Drug discovery
Engineering and Technology
Fluorescence
Genetic transcription
Grooves
Health aspects
Ligands
Medicine and Health Sciences
Pharmaceutical research
Physical Sciences
Promoters (Genetics)
Scaffolds
Selectivity
Senescence
Structure
Telomerase
Telomerase reverse transcriptase
Thermophoresis
title Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20discovery%20of%20small%20molecules%20targeting%20the%20higher-order%20hTERT%20promoter%20G-quadruplex&rft.jtitle=PloS%20one&rft.au=Monsen,%20Robert%20C&rft.date=2022-06-16&rft.volume=17&rft.issue=6&rft.spage=e0270165&rft.epage=e0270165&rft.pages=e0270165-e0270165&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0270165&rft_dat=%3Cgale_plos_%3EA707329720%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686270027&rft_id=info:pmid/35709230&rft_galeid=A707329720&rft_doaj_id=oai_doaj_org_article_222165cb4c8246be965eb0eccafe0b5a&rfr_iscdi=true