Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication, and behavioral challenges. Diagnosis of ASD is complicated and there is an urgent need to identify ASD-associated biomarkers and features to help automate diagnostics and develop predict...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-07, Vol.17 (7), p.e0269773-e0269773 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0269773 |
---|---|
container_issue | 7 |
container_start_page | e0269773 |
container_title | PloS one |
container_volume | 17 |
creator | Han, Yu Rizzo, Donna M Hanley, John P Coderre, Emily L Prelock, Patricia A |
description | Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication, and behavioral challenges. Diagnosis of ASD is complicated and there is an urgent need to identify ASD-associated biomarkers and features to help automate diagnostics and develop predictive ASD models. The present study adopts a novel evolutionary algorithm, the conjunctive clause evolutionary algorithm (CCEA), to select features most significant for distinguishing individuals with and without ASD, and is able to accommodate datasets having a small number of samples with a large number of feature measurements. The dataset is unique and comprises both behavioral and neuroimaging measurements from a total of 28 children from 7 to 14 years old. Potential biomarker candidates identified include brain volume, area, cortical thickness, and mean curvature in specific regions around the cingulate cortex, frontal cortex, and temporal-parietal junction, as well as behavioral features associated with theory of mind. A separate machine learning classifier (i.e., k-nearest neighbors algorithm) was used to validate the CCEA feature selection and for ASD prediction. Study findings demonstrate how machine learning tools might help move the needle on improving diagnostic and predictive models of ASD. |
doi_str_mv | 10.1371/journal.pone.0269773 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686269933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A709492317</galeid><doaj_id>oai_doaj_org_article_e37fcf82a71f49ce951ad91264e6ec8e</doaj_id><sourcerecordid>A709492317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-31a7f2d72854ca255b22d97d251a63f90e0cda1f8616b006f50203f1fcc5731e3</originalsourceid><addsrcrecordid>eNqNk02LFDEQhhtR3HX1Hwg2CKKHGfPRnUwuC8vix8DCgl_XUJNUZjJ0J2PSvbgH_7sZZ5Rt2YPk0OnKk7dSL1VV9ZySOeWSvt3GMQXo5rsYcE6YUFLyB9UpVZzNBCP84Z39SfUk5y0hLV8I8bg64a1UkovmtPq5tBgG7259WNcBxxQhwBB7b6CrIdh6hRu48TGVX4cwjAlz7WKqYRx87uu8QzOksa-tzzFZTGUD6xCzz7UPtdn4ziYM9Zj3CXoogYB1h5BCCTytHjnoMj47fs-qr-_ffbn8OLu6_rC8vLiaGSHUMOMUpGNWskXbGGBtu2LMKmlZS0FwpwgSY4G6haBiRYhwLSlFO-qMaSWnyM-qFwfdXRezPjqXNRMLUYxTnBdieSBshK3eJd9DutURvP4diGmtIQ3edKiRS2fcgoGkrlEGVXmFVZSJBgWaxT7b-THbuOrRmmJwsW8iOj0JfqPX8UYrJhijogi8Pgqk-H3EPOjeZ4NdBwHjeHg3aYsdTUFf_oPeX92RWkMpwAcXS16zF9UXkqhGMU5loeb3UGVZLP1Q2sz5Ep9ceDO5UJgBfwxrGHPWy8-f_p-9_jZlX91hNwjdsMmxKx0XQ56CzQE0Keac0P01mRK9n5I_buj9lOjjlPBfiz4FnA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686269933</pqid></control><display><type>article</type><title>Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Yu ; Rizzo, Donna M ; Hanley, John P ; Coderre, Emily L ; Prelock, Patricia A</creator><creatorcontrib>Han, Yu ; Rizzo, Donna M ; Hanley, John P ; Coderre, Emily L ; Prelock, Patricia A</creatorcontrib><description>Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication, and behavioral challenges. Diagnosis of ASD is complicated and there is an urgent need to identify ASD-associated biomarkers and features to help automate diagnostics and develop predictive ASD models. The present study adopts a novel evolutionary algorithm, the conjunctive clause evolutionary algorithm (CCEA), to select features most significant for distinguishing individuals with and without ASD, and is able to accommodate datasets having a small number of samples with a large number of feature measurements. The dataset is unique and comprises both behavioral and neuroimaging measurements from a total of 28 children from 7 to 14 years old. Potential biomarker candidates identified include brain volume, area, cortical thickness, and mean curvature in specific regions around the cingulate cortex, frontal cortex, and temporal-parietal junction, as well as behavioral features associated with theory of mind. A separate machine learning classifier (i.e., k-nearest neighbors algorithm) was used to validate the CCEA feature selection and for ASD prediction. Study findings demonstrate how machine learning tools might help move the needle on improving diagnostic and predictive models of ASD.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0269773</identifier><identifier>PMID: 35797364</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Anatomy ; Autism ; Automation ; Biology and Life Sciences ; Biomarkers ; Brain architecture ; Children ; Classification ; Cognition ; Computer and Information Sciences ; Cortex (cingulate) ; Cortex (frontal) ; Cortex (parietal) ; Cortex (temporal) ; Datasets ; Diagnosis ; Diseases ; Evaluation ; Evolutionary algorithms ; Feature selection ; Genetic algorithms ; Learning algorithms ; Machine learning ; Magnetic resonance imaging ; Medical diagnosis ; Medical imaging ; Medicine and Health Sciences ; Neural networks ; Neurodevelopmental disorders ; Neuroimaging ; People and Places ; Pervasive developmental disorders ; Prediction models ; Research and Analysis Methods ; Scanners ; Social Sciences ; Temporal lobe</subject><ispartof>PloS one, 2022-07, Vol.17 (7), p.e0269773-e0269773</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Han et al 2022 Han et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-31a7f2d72854ca255b22d97d251a63f90e0cda1f8616b006f50203f1fcc5731e3</citedby><cites>FETCH-LOGICAL-c669t-31a7f2d72854ca255b22d97d251a63f90e0cda1f8616b006f50203f1fcc5731e3</cites><orcidid>0000-0001-5507-9228 ; 0000-0001-6870-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262216/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262216/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Rizzo, Donna M</creatorcontrib><creatorcontrib>Hanley, John P</creatorcontrib><creatorcontrib>Coderre, Emily L</creatorcontrib><creatorcontrib>Prelock, Patricia A</creatorcontrib><title>Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning</title><title>PloS one</title><description>Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication, and behavioral challenges. Diagnosis of ASD is complicated and there is an urgent need to identify ASD-associated biomarkers and features to help automate diagnostics and develop predictive ASD models. The present study adopts a novel evolutionary algorithm, the conjunctive clause evolutionary algorithm (CCEA), to select features most significant for distinguishing individuals with and without ASD, and is able to accommodate datasets having a small number of samples with a large number of feature measurements. The dataset is unique and comprises both behavioral and neuroimaging measurements from a total of 28 children from 7 to 14 years old. Potential biomarker candidates identified include brain volume, area, cortical thickness, and mean curvature in specific regions around the cingulate cortex, frontal cortex, and temporal-parietal junction, as well as behavioral features associated with theory of mind. A separate machine learning classifier (i.e., k-nearest neighbors algorithm) was used to validate the CCEA feature selection and for ASD prediction. Study findings demonstrate how machine learning tools might help move the needle on improving diagnostic and predictive models of ASD.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Autism</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain architecture</subject><subject>Children</subject><subject>Classification</subject><subject>Cognition</subject><subject>Computer and Information Sciences</subject><subject>Cortex (cingulate)</subject><subject>Cortex (frontal)</subject><subject>Cortex (parietal)</subject><subject>Cortex (temporal)</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Diseases</subject><subject>Evaluation</subject><subject>Evolutionary algorithms</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Neural networks</subject><subject>Neurodevelopmental disorders</subject><subject>Neuroimaging</subject><subject>People and Places</subject><subject>Pervasive developmental disorders</subject><subject>Prediction models</subject><subject>Research and Analysis Methods</subject><subject>Scanners</subject><subject>Social Sciences</subject><subject>Temporal lobe</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk02LFDEQhhtR3HX1Hwg2CKKHGfPRnUwuC8vix8DCgl_XUJNUZjJ0J2PSvbgH_7sZZ5Rt2YPk0OnKk7dSL1VV9ZySOeWSvt3GMQXo5rsYcE6YUFLyB9UpVZzNBCP84Z39SfUk5y0hLV8I8bg64a1UkovmtPq5tBgG7259WNcBxxQhwBB7b6CrIdh6hRu48TGVX4cwjAlz7WKqYRx87uu8QzOksa-tzzFZTGUD6xCzz7UPtdn4ziYM9Zj3CXoogYB1h5BCCTytHjnoMj47fs-qr-_ffbn8OLu6_rC8vLiaGSHUMOMUpGNWskXbGGBtu2LMKmlZS0FwpwgSY4G6haBiRYhwLSlFO-qMaSWnyM-qFwfdXRezPjqXNRMLUYxTnBdieSBshK3eJd9DutURvP4diGmtIQ3edKiRS2fcgoGkrlEGVXmFVZSJBgWaxT7b-THbuOrRmmJwsW8iOj0JfqPX8UYrJhijogi8Pgqk-H3EPOjeZ4NdBwHjeHg3aYsdTUFf_oPeX92RWkMpwAcXS16zF9UXkqhGMU5loeb3UGVZLP1Q2sz5Ep9ceDO5UJgBfwxrGHPWy8-f_p-9_jZlX91hNwjdsMmxKx0XQ56CzQE0Keac0P01mRK9n5I_buj9lOjjlPBfiz4FnA</recordid><startdate>20220707</startdate><enddate>20220707</enddate><creator>Han, Yu</creator><creator>Rizzo, Donna M</creator><creator>Hanley, John P</creator><creator>Coderre, Emily L</creator><creator>Prelock, Patricia A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5507-9228</orcidid><orcidid>https://orcid.org/0000-0001-6870-9321</orcidid></search><sort><creationdate>20220707</creationdate><title>Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning</title><author>Han, Yu ; Rizzo, Donna M ; Hanley, John P ; Coderre, Emily L ; Prelock, Patricia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-31a7f2d72854ca255b22d97d251a63f90e0cda1f8616b006f50203f1fcc5731e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Autism</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain architecture</topic><topic>Children</topic><topic>Classification</topic><topic>Cognition</topic><topic>Computer and Information Sciences</topic><topic>Cortex (cingulate)</topic><topic>Cortex (frontal)</topic><topic>Cortex (parietal)</topic><topic>Cortex (temporal)</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Diseases</topic><topic>Evaluation</topic><topic>Evolutionary algorithms</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Neural networks</topic><topic>Neurodevelopmental disorders</topic><topic>Neuroimaging</topic><topic>People and Places</topic><topic>Pervasive developmental disorders</topic><topic>Prediction models</topic><topic>Research and Analysis Methods</topic><topic>Scanners</topic><topic>Social Sciences</topic><topic>Temporal lobe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Rizzo, Donna M</creatorcontrib><creatorcontrib>Hanley, John P</creatorcontrib><creatorcontrib>Coderre, Emily L</creatorcontrib><creatorcontrib>Prelock, Patricia A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yu</au><au>Rizzo, Donna M</au><au>Hanley, John P</au><au>Coderre, Emily L</au><au>Prelock, Patricia A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning</atitle><jtitle>PloS one</jtitle><date>2022-07-07</date><risdate>2022</risdate><volume>17</volume><issue>7</issue><spage>e0269773</spage><epage>e0269773</epage><pages>e0269773-e0269773</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication, and behavioral challenges. Diagnosis of ASD is complicated and there is an urgent need to identify ASD-associated biomarkers and features to help automate diagnostics and develop predictive ASD models. The present study adopts a novel evolutionary algorithm, the conjunctive clause evolutionary algorithm (CCEA), to select features most significant for distinguishing individuals with and without ASD, and is able to accommodate datasets having a small number of samples with a large number of feature measurements. The dataset is unique and comprises both behavioral and neuroimaging measurements from a total of 28 children from 7 to 14 years old. Potential biomarker candidates identified include brain volume, area, cortical thickness, and mean curvature in specific regions around the cingulate cortex, frontal cortex, and temporal-parietal junction, as well as behavioral features associated with theory of mind. A separate machine learning classifier (i.e., k-nearest neighbors algorithm) was used to validate the CCEA feature selection and for ASD prediction. Study findings demonstrate how machine learning tools might help move the needle on improving diagnostic and predictive models of ASD.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35797364</pmid><doi>10.1371/journal.pone.0269773</doi><tpages>e0269773</tpages><orcidid>https://orcid.org/0000-0001-5507-9228</orcidid><orcidid>https://orcid.org/0000-0001-6870-9321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-07, Vol.17 (7), p.e0269773-e0269773 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2686269933 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Anatomy Autism Automation Biology and Life Sciences Biomarkers Brain architecture Children Classification Cognition Computer and Information Sciences Cortex (cingulate) Cortex (frontal) Cortex (parietal) Cortex (temporal) Datasets Diagnosis Diseases Evaluation Evolutionary algorithms Feature selection Genetic algorithms Learning algorithms Machine learning Magnetic resonance imaging Medical diagnosis Medical imaging Medicine and Health Sciences Neural networks Neurodevelopmental disorders Neuroimaging People and Places Pervasive developmental disorders Prediction models Research and Analysis Methods Scanners Social Sciences Temporal lobe |
title | Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20neuroanatomical%20and%20behavioral%20features%20for%20autism%20spectrum%20disorder%20diagnosis%20in%20children%20using%20machine%20learning&rft.jtitle=PloS%20one&rft.au=Han,%20Yu&rft.date=2022-07-07&rft.volume=17&rft.issue=7&rft.spage=e0269773&rft.epage=e0269773&rft.pages=e0269773-e0269773&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0269773&rft_dat=%3Cgale_plos_%3EA709492317%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686269933&rft_id=info:pmid/35797364&rft_galeid=A709492317&rft_doaj_id=oai_doaj_org_article_e37fcf82a71f49ce951ad91264e6ec8e&rfr_iscdi=true |