Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini)
Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repe...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-06, Vol.17 (6), p.e0268660-e0268660 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0268660 |
---|---|
container_issue | 6 |
container_start_page | e0268660 |
container_title | PloS one |
container_volume | 17 |
creator | Babb, Paul L Gregorič, Matjaž Lahens, Nicholas F Nicholson, David N Hayashi, Cheryl Y Higgins, Linden Kuntner, Matjaž Agnarsson, Ingi Voight, Benjamin F |
description | Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks. |
doi_str_mv | 10.1371/journal.pone.0268660 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686268166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706180220</galeid><doaj_id>oai_doaj_org_article_67834f0c0a724aab99a18c18237532c9</doaj_id><sourcerecordid>A706180220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-27d952b5462ca1423609131f05fbf3ed69b19c9a32f01674e62576dfff39600b3</originalsourceid><addsrcrecordid>eNqNk1tr2zAUx83YWLts32BshsHWPiTTxZail0HJboFCYbdXcSxLjlrHyiR5t08_uXFLPPowhJCQfucv6a9zsuwpRgtMOX596XrfQbvYuU4vEGFLxtC97BgLSuaMIHr_YH6UPQrhEqGSJuphdkRLxhin6Dizqw14UFF7-weidV3uTB43Om9057Y6h67Og22v5k07TKOHLihvdzFthoF9C_6n7V6FvAJ_lYedrbXPT1agvQvR25DX14A9fZw9MNAG_WQcZ9nX9---rD7Ozy8-rFdn53PFCIlzwmtRkqosGFGAC0IZEphig0pTGaprJioslABKDMKMF5qRkrPaGEMFQ6iis-z5XnfXuiBHl4IcDEodM5aI9Z6oHVzKnbdb8L-lAyuvF5xvJPhoVasl40taGKQQcFIAVEIAXiq8JJSXlCiRtN6Mp_XVVtdKd8midiI63ensRjbuhxSYI4xIEjgZBbz73usQ5dYGpdtkt3b9cG9eIFQwOtz7xT_o3a8bqQbSA2xnXDpXDaLyjCOGl4ikjJhlizuo1Gq9tSqllLFpfRJwOglITNS_YgN9CHL9-dP_sxffpuzLA3ajoY2b4Np-yMUwBYs9qFJmBa_NrckYyaEibtyQQ0XIsSJS2LPDD7oNuikB-hc_uwSZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686268166</pqid></control><display><type>article</type><title>Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini)</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Babb, Paul L ; Gregorič, Matjaž ; Lahens, Nicholas F ; Nicholson, David N ; Hayashi, Cheryl Y ; Higgins, Linden ; Kuntner, Matjaž ; Agnarsson, Ingi ; Voight, Benjamin F</creator><contributor>Aceto, Serena</contributor><creatorcontrib>Babb, Paul L ; Gregorič, Matjaž ; Lahens, Nicholas F ; Nicholson, David N ; Hayashi, Cheryl Y ; Higgins, Linden ; Kuntner, Matjaž ; Agnarsson, Ingi ; Voight, Benjamin F ; Aceto, Serena</creatorcontrib><description>Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0268660</identifier><identifier>PMID: 35666730</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Assemblies ; Biology and Life Sciences ; Biomaterials ; Biomedical materials ; Caerostris darwini ; Composite materials ; Experiments ; Female ; Females ; Fibroins - genetics ; Fibroins - metabolism ; Gene expression ; Genes ; Genetic aspects ; Genomes ; Helices ; Male ; Males ; Medicine and Health Sciences ; Plant Bark - metabolism ; Protein composition ; Proteins ; Research and Analysis Methods ; Silk ; Silk - chemistry ; Silk gland ; Spiders ; Transcriptome ; Transcriptomes ; Transcriptomics</subject><ispartof>PloS one, 2022-06, Vol.17 (6), p.e0268660-e0268660</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Babb et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Babb et al 2022 Babb et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-27d952b5462ca1423609131f05fbf3ed69b19c9a32f01674e62576dfff39600b3</citedby><cites>FETCH-LOGICAL-c622t-27d952b5462ca1423609131f05fbf3ed69b19c9a32f01674e62576dfff39600b3</cites><orcidid>0000-0002-6205-9994 ; 0000-0002-3965-5624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35666730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aceto, Serena</contributor><creatorcontrib>Babb, Paul L</creatorcontrib><creatorcontrib>Gregorič, Matjaž</creatorcontrib><creatorcontrib>Lahens, Nicholas F</creatorcontrib><creatorcontrib>Nicholson, David N</creatorcontrib><creatorcontrib>Hayashi, Cheryl Y</creatorcontrib><creatorcontrib>Higgins, Linden</creatorcontrib><creatorcontrib>Kuntner, Matjaž</creatorcontrib><creatorcontrib>Agnarsson, Ingi</creatorcontrib><creatorcontrib>Voight, Benjamin F</creatorcontrib><title>Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks.</description><subject>Analysis</subject><subject>Animals</subject><subject>Assemblies</subject><subject>Biology and Life Sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Caerostris darwini</subject><subject>Composite materials</subject><subject>Experiments</subject><subject>Female</subject><subject>Females</subject><subject>Fibroins - genetics</subject><subject>Fibroins - metabolism</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Helices</subject><subject>Male</subject><subject>Males</subject><subject>Medicine and Health Sciences</subject><subject>Plant Bark - metabolism</subject><subject>Protein composition</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Silk</subject><subject>Silk - chemistry</subject><subject>Silk gland</subject><subject>Spiders</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr2zAUx83YWLts32BshsHWPiTTxZail0HJboFCYbdXcSxLjlrHyiR5t08_uXFLPPowhJCQfucv6a9zsuwpRgtMOX596XrfQbvYuU4vEGFLxtC97BgLSuaMIHr_YH6UPQrhEqGSJuphdkRLxhin6Dizqw14UFF7-weidV3uTB43Om9057Y6h67Og22v5k07TKOHLihvdzFthoF9C_6n7V6FvAJ_lYedrbXPT1agvQvR25DX14A9fZw9MNAG_WQcZ9nX9---rD7Ozy8-rFdn53PFCIlzwmtRkqosGFGAC0IZEphig0pTGaprJioslABKDMKMF5qRkrPaGEMFQ6iis-z5XnfXuiBHl4IcDEodM5aI9Z6oHVzKnbdb8L-lAyuvF5xvJPhoVasl40taGKQQcFIAVEIAXiq8JJSXlCiRtN6Mp_XVVtdKd8midiI63ensRjbuhxSYI4xIEjgZBbz73usQ5dYGpdtkt3b9cG9eIFQwOtz7xT_o3a8bqQbSA2xnXDpXDaLyjCOGl4ikjJhlizuo1Gq9tSqllLFpfRJwOglITNS_YgN9CHL9-dP_sxffpuzLA3ajoY2b4Np-yMUwBYs9qFJmBa_NrckYyaEibtyQQ0XIsSJS2LPDD7oNuikB-hc_uwSZ</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Babb, Paul L</creator><creator>Gregorič, Matjaž</creator><creator>Lahens, Nicholas F</creator><creator>Nicholson, David N</creator><creator>Hayashi, Cheryl Y</creator><creator>Higgins, Linden</creator><creator>Kuntner, Matjaž</creator><creator>Agnarsson, Ingi</creator><creator>Voight, Benjamin F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6205-9994</orcidid><orcidid>https://orcid.org/0000-0002-3965-5624</orcidid></search><sort><creationdate>20220606</creationdate><title>Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini)</title><author>Babb, Paul L ; Gregorič, Matjaž ; Lahens, Nicholas F ; Nicholson, David N ; Hayashi, Cheryl Y ; Higgins, Linden ; Kuntner, Matjaž ; Agnarsson, Ingi ; Voight, Benjamin F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-27d952b5462ca1423609131f05fbf3ed69b19c9a32f01674e62576dfff39600b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Assemblies</topic><topic>Biology and Life Sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Caerostris darwini</topic><topic>Composite materials</topic><topic>Experiments</topic><topic>Female</topic><topic>Females</topic><topic>Fibroins - genetics</topic><topic>Fibroins - metabolism</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Helices</topic><topic>Male</topic><topic>Males</topic><topic>Medicine and Health Sciences</topic><topic>Plant Bark - metabolism</topic><topic>Protein composition</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Silk</topic><topic>Silk - chemistry</topic><topic>Silk gland</topic><topic>Spiders</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babb, Paul L</creatorcontrib><creatorcontrib>Gregorič, Matjaž</creatorcontrib><creatorcontrib>Lahens, Nicholas F</creatorcontrib><creatorcontrib>Nicholson, David N</creatorcontrib><creatorcontrib>Hayashi, Cheryl Y</creatorcontrib><creatorcontrib>Higgins, Linden</creatorcontrib><creatorcontrib>Kuntner, Matjaž</creatorcontrib><creatorcontrib>Agnarsson, Ingi</creatorcontrib><creatorcontrib>Voight, Benjamin F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babb, Paul L</au><au>Gregorič, Matjaž</au><au>Lahens, Nicholas F</au><au>Nicholson, David N</au><au>Hayashi, Cheryl Y</au><au>Higgins, Linden</au><au>Kuntner, Matjaž</au><au>Agnarsson, Ingi</au><au>Voight, Benjamin F</au><au>Aceto, Serena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-06-06</date><risdate>2022</risdate><volume>17</volume><issue>6</issue><spage>e0268660</spage><epage>e0268660</epage><pages>e0268660-e0268660</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35666730</pmid><doi>10.1371/journal.pone.0268660</doi><tpages>e0268660</tpages><orcidid>https://orcid.org/0000-0002-6205-9994</orcidid><orcidid>https://orcid.org/0000-0002-3965-5624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-06, Vol.17 (6), p.e0268660-e0268660 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2686268166 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Animals Assemblies Biology and Life Sciences Biomaterials Biomedical materials Caerostris darwini Composite materials Experiments Female Females Fibroins - genetics Fibroins - metabolism Gene expression Genes Genetic aspects Genomes Helices Male Males Medicine and Health Sciences Plant Bark - metabolism Protein composition Proteins Research and Analysis Methods Silk Silk - chemistry Silk gland Spiders Transcriptome Transcriptomes Transcriptomics |
title | Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20genome%20and%20silk-gland%20transcriptomes%20of%20Darwin's%20bark%20spider%20(Caerostris%20darwini)&rft.jtitle=PloS%20one&rft.au=Babb,%20Paul%20L&rft.date=2022-06-06&rft.volume=17&rft.issue=6&rft.spage=e0268660&rft.epage=e0268660&rft.pages=e0268660-e0268660&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0268660&rft_dat=%3Cgale_plos_%3EA706180220%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686268166&rft_id=info:pmid/35666730&rft_galeid=A706180220&rft_doaj_id=oai_doaj_org_article_67834f0c0a724aab99a18c18237532c9&rfr_iscdi=true |