Dynamical analysis and optimal control of the developed information transmission model
Information transmission significantly impacts social stability and technological advancement. This paper compares the phenomenon of "Super transmission" and "Asymptomatic infection" in COVID-19 transmission to information transmission. The former is similar to authoritative info...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-05, Vol.17 (5), p.e0268326-e0268326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0268326 |
---|---|
container_issue | 5 |
container_start_page | e0268326 |
container_title | PloS one |
container_volume | 17 |
creator | Kang, Sida Hou, Xilin Hu, Yuhan Liu, Hongyu |
description | Information transmission significantly impacts social stability and technological advancement. This paper compares the phenomenon of "Super transmission" and "Asymptomatic infection" in COVID-19 transmission to information transmission. The former is similar to authoritative information transmission individuals, whereas the latter is similar to individuals with low acceptance in information transmission. It then constructs an S2EIR model with transmitter authority and individual acceptance levels. Then, it analyzes the asymptotic stability of information-free and information-existence equilibrium on a local and global scale, as well as the model's basic reproduction number, R0. Distinguished with traditional studies, the population density function and Hamiltonian function are constructed by taking proportion of "Super transmitter" and proportion of hesitant group turning into transmitters as optimization control variables. Based on the Pontryagin maximum principle, an optimal control strategy is designed to effectively facilitate information transmission. The numerical simulation corroborates the theoretical analysis results and the system's sensitivity to control parameter changes. The research results indicate that the authoritative "Super transmitter" has a beneficial effect on information transmission. In contrast, the "Asymptomatic infected individual" with poor individual acceptance level negatively affects information transmission. |
doi_str_mv | 10.1371/journal.pone.0268326 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686259966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704702747</galeid><doaj_id>oai_doaj_org_article_ba31a7dbb1e44a45bd35e851972c5938</doaj_id><sourcerecordid>A704702747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-53c465fc31a6b4ebdcbf43c6cdbd4b563364f4c23bbba661c8fb00ff3eb2e8433</originalsourceid><addsrcrecordid>eNqNkktr3DAUhU1padK0_6C0hkJpFzPVy7K9KYT0NRAI9JGt0ONqxoNsTSQ7dP595Y4TxiWL4oXl6-8e6R6dLHuJ0RLTEn_Y-iF00i13voMlIryihD_KTnFNyYITRB8frU-yZzFuESpoxfnT7IQWHLGaoNPs-tO-k22jpctlUtvHJqaFyf2ub9pU1L7rg3e5t3m_gdzALTi_A5M3nfWhlX3ju7wPsottE-P40XoD7nn2xEoX4cX0Pst-ffn88-Lb4vLq6-ri_HKheU36RUE144XVFEuuGCijlWVUc22UYarglHJmmSZUKSU5x7qyCiFrKSgCFaP0LHt90N05H8VkSRTJDU6KuuY8EasDYbzcil1IU4W98LIRfws-rIUMfaMdCCXTOUqjFAbGJCuUoQVUBa5LoouaVknr47TboFowGpI30s1E53-6ZiPW_lbUmBJWoyTwbhII_maA2IvkmgbnZAd-GM_NK0IwK0f0zT_ow9NN1FqmAcY7SfvqUVSclyjpkJKViVo-QKXHQLr6lB_bpPqs4f2sYUwB_O7XcohRrH58_3_26nrOvj1iNyBdv4neDWOK4hxkB1AHH2MAe28yRmKM_50bYoy_mOKf2l4dX9B9013e6R-a1wFZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686259966</pqid></control><display><type>article</type><title>Dynamical analysis and optimal control of the developed information transmission model</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kang, Sida ; Hou, Xilin ; Hu, Yuhan ; Liu, Hongyu</creator><contributor>Abdo, Mohammed S.</contributor><creatorcontrib>Kang, Sida ; Hou, Xilin ; Hu, Yuhan ; Liu, Hongyu ; Abdo, Mohammed S.</creatorcontrib><description>Information transmission significantly impacts social stability and technological advancement. This paper compares the phenomenon of "Super transmission" and "Asymptomatic infection" in COVID-19 transmission to information transmission. The former is similar to authoritative information transmission individuals, whereas the latter is similar to individuals with low acceptance in information transmission. It then constructs an S2EIR model with transmitter authority and individual acceptance levels. Then, it analyzes the asymptotic stability of information-free and information-existence equilibrium on a local and global scale, as well as the model's basic reproduction number, R0. Distinguished with traditional studies, the population density function and Hamiltonian function are constructed by taking proportion of "Super transmitter" and proportion of hesitant group turning into transmitters as optimization control variables. Based on the Pontryagin maximum principle, an optimal control strategy is designed to effectively facilitate information transmission. The numerical simulation corroborates the theoretical analysis results and the system's sensitivity to control parameter changes. The research results indicate that the authoritative "Super transmitter" has a beneficial effect on information transmission. In contrast, the "Asymptomatic infected individual" with poor individual acceptance level negatively affects information transmission.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0268326</identifier><identifier>PMID: 35604920</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Asymptomatic infection ; Biology and Life Sciences ; Computer and Information Sciences ; Coronaviruses ; COVID-19 ; Dynamical systems ; Evaluation ; Hamiltonian functions ; Infectious diseases ; Information management ; Information processing ; Innovations ; Mathematical models ; Maximum principle ; Medicine and Health Sciences ; Numerical simulations ; Optimal control ; Optimization ; Parameter sensitivity ; Physical Sciences ; Population density ; Population studies ; Social networks ; Social Sciences ; Stability analysis ; Theoretical analysis ; Transmitters</subject><ispartof>PloS one, 2022-05, Vol.17 (5), p.e0268326-e0268326</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Kang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Kang et al 2022 Kang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-53c465fc31a6b4ebdcbf43c6cdbd4b563364f4c23bbba661c8fb00ff3eb2e8433</citedby><cites>FETCH-LOGICAL-c692t-53c465fc31a6b4ebdcbf43c6cdbd4b563364f4c23bbba661c8fb00ff3eb2e8433</cites><orcidid>0000-0002-9980-2876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35604920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abdo, Mohammed S.</contributor><creatorcontrib>Kang, Sida</creatorcontrib><creatorcontrib>Hou, Xilin</creatorcontrib><creatorcontrib>Hu, Yuhan</creatorcontrib><creatorcontrib>Liu, Hongyu</creatorcontrib><title>Dynamical analysis and optimal control of the developed information transmission model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Information transmission significantly impacts social stability and technological advancement. This paper compares the phenomenon of "Super transmission" and "Asymptomatic infection" in COVID-19 transmission to information transmission. The former is similar to authoritative information transmission individuals, whereas the latter is similar to individuals with low acceptance in information transmission. It then constructs an S2EIR model with transmitter authority and individual acceptance levels. Then, it analyzes the asymptotic stability of information-free and information-existence equilibrium on a local and global scale, as well as the model's basic reproduction number, R0. Distinguished with traditional studies, the population density function and Hamiltonian function are constructed by taking proportion of "Super transmitter" and proportion of hesitant group turning into transmitters as optimization control variables. Based on the Pontryagin maximum principle, an optimal control strategy is designed to effectively facilitate information transmission. The numerical simulation corroborates the theoretical analysis results and the system's sensitivity to control parameter changes. The research results indicate that the authoritative "Super transmitter" has a beneficial effect on information transmission. In contrast, the "Asymptomatic infected individual" with poor individual acceptance level negatively affects information transmission.</description><subject>Asymptomatic infection</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Dynamical systems</subject><subject>Evaluation</subject><subject>Hamiltonian functions</subject><subject>Infectious diseases</subject><subject>Information management</subject><subject>Information processing</subject><subject>Innovations</subject><subject>Mathematical models</subject><subject>Maximum principle</subject><subject>Medicine and Health Sciences</subject><subject>Numerical simulations</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>Physical Sciences</subject><subject>Population density</subject><subject>Population studies</subject><subject>Social networks</subject><subject>Social Sciences</subject><subject>Stability analysis</subject><subject>Theoretical analysis</subject><subject>Transmitters</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktr3DAUhU1padK0_6C0hkJpFzPVy7K9KYT0NRAI9JGt0ONqxoNsTSQ7dP595Y4TxiWL4oXl6-8e6R6dLHuJ0RLTEn_Y-iF00i13voMlIryihD_KTnFNyYITRB8frU-yZzFuESpoxfnT7IQWHLGaoNPs-tO-k22jpctlUtvHJqaFyf2ub9pU1L7rg3e5t3m_gdzALTi_A5M3nfWhlX3ju7wPsottE-P40XoD7nn2xEoX4cX0Pst-ffn88-Lb4vLq6-ri_HKheU36RUE144XVFEuuGCijlWVUc22UYarglHJmmSZUKSU5x7qyCiFrKSgCFaP0LHt90N05H8VkSRTJDU6KuuY8EasDYbzcil1IU4W98LIRfws-rIUMfaMdCCXTOUqjFAbGJCuUoQVUBa5LoouaVknr47TboFowGpI30s1E53-6ZiPW_lbUmBJWoyTwbhII_maA2IvkmgbnZAd-GM_NK0IwK0f0zT_ow9NN1FqmAcY7SfvqUVSclyjpkJKViVo-QKXHQLr6lB_bpPqs4f2sYUwB_O7XcohRrH58_3_26nrOvj1iNyBdv4neDWOK4hxkB1AHH2MAe28yRmKM_50bYoy_mOKf2l4dX9B9013e6R-a1wFZ</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Kang, Sida</creator><creator>Hou, Xilin</creator><creator>Hu, Yuhan</creator><creator>Liu, Hongyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9980-2876</orcidid></search><sort><creationdate>20220523</creationdate><title>Dynamical analysis and optimal control of the developed information transmission model</title><author>Kang, Sida ; Hou, Xilin ; Hu, Yuhan ; Liu, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-53c465fc31a6b4ebdcbf43c6cdbd4b563364f4c23bbba661c8fb00ff3eb2e8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptomatic infection</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Dynamical systems</topic><topic>Evaluation</topic><topic>Hamiltonian functions</topic><topic>Infectious diseases</topic><topic>Information management</topic><topic>Information processing</topic><topic>Innovations</topic><topic>Mathematical models</topic><topic>Maximum principle</topic><topic>Medicine and Health Sciences</topic><topic>Numerical simulations</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>Physical Sciences</topic><topic>Population density</topic><topic>Population studies</topic><topic>Social networks</topic><topic>Social Sciences</topic><topic>Stability analysis</topic><topic>Theoretical analysis</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Sida</creatorcontrib><creatorcontrib>Hou, Xilin</creatorcontrib><creatorcontrib>Hu, Yuhan</creatorcontrib><creatorcontrib>Liu, Hongyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Sida</au><au>Hou, Xilin</au><au>Hu, Yuhan</au><au>Liu, Hongyu</au><au>Abdo, Mohammed S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical analysis and optimal control of the developed information transmission model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-05-23</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>e0268326</spage><epage>e0268326</epage><pages>e0268326-e0268326</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Information transmission significantly impacts social stability and technological advancement. This paper compares the phenomenon of "Super transmission" and "Asymptomatic infection" in COVID-19 transmission to information transmission. The former is similar to authoritative information transmission individuals, whereas the latter is similar to individuals with low acceptance in information transmission. It then constructs an S2EIR model with transmitter authority and individual acceptance levels. Then, it analyzes the asymptotic stability of information-free and information-existence equilibrium on a local and global scale, as well as the model's basic reproduction number, R0. Distinguished with traditional studies, the population density function and Hamiltonian function are constructed by taking proportion of "Super transmitter" and proportion of hesitant group turning into transmitters as optimization control variables. Based on the Pontryagin maximum principle, an optimal control strategy is designed to effectively facilitate information transmission. The numerical simulation corroborates the theoretical analysis results and the system's sensitivity to control parameter changes. The research results indicate that the authoritative "Super transmitter" has a beneficial effect on information transmission. In contrast, the "Asymptomatic infected individual" with poor individual acceptance level negatively affects information transmission.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35604920</pmid><doi>10.1371/journal.pone.0268326</doi><tpages>e0268326</tpages><orcidid>https://orcid.org/0000-0002-9980-2876</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-05, Vol.17 (5), p.e0268326-e0268326 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2686259966 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Asymptomatic infection Biology and Life Sciences Computer and Information Sciences Coronaviruses COVID-19 Dynamical systems Evaluation Hamiltonian functions Infectious diseases Information management Information processing Innovations Mathematical models Maximum principle Medicine and Health Sciences Numerical simulations Optimal control Optimization Parameter sensitivity Physical Sciences Population density Population studies Social networks Social Sciences Stability analysis Theoretical analysis Transmitters |
title | Dynamical analysis and optimal control of the developed information transmission model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20analysis%20and%20optimal%20control%20of%20the%20developed%20information%20transmission%20model&rft.jtitle=PloS%20one&rft.au=Kang,%20Sida&rft.date=2022-05-23&rft.volume=17&rft.issue=5&rft.spage=e0268326&rft.epage=e0268326&rft.pages=e0268326-e0268326&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0268326&rft_dat=%3Cgale_plos_%3EA704702747%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686259966&rft_id=info:pmid/35604920&rft_galeid=A704702747&rft_doaj_id=oai_doaj_org_article_ba31a7dbb1e44a45bd35e851972c5938&rfr_iscdi=true |