A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis

In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-05, Vol.17 (5), p.e0268475-e0268475
Hauptverfasser: Bois, Alexandre, Tervil, Brian, Moreau, Albane, Vienne-Jumeau, Aliénor, Ricard, Damien, Oudre, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0268475
container_issue 5
container_start_page e0268475
container_title PloS one
container_volume 17
creator Bois, Alexandre
Tervil, Brian
Moreau, Albane
Vienne-Jumeau, Aliénor
Ricard, Damien
Oudre, Laurent
description In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but they fail to detect subtle changes in several pathologies including multiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system whose symptoms include lower limb impairment, which is why gait trials are commonly used by clinicians for their patients' follow-up. This article describes a method to compare pairs of gait signals, visualize the results and interpret them, based on topological data analysis techniques. Our method is non-parametric and requires no data other than gait signals acquired with inertial measurement units. We introduce tools from topological data analysis (sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible in order to encourage its use by clinicians. We apply our method to study a cohort of patients suffering from progressive multiple sclerosis and healthy subjects. We show that it can help estimate the severity of the disease and also be used for longitudinal follow-up to detect an evolution of the disease or other phenomena such as asymmetry or outliers.
doi_str_mv 10.1371/journal.pone.0268475
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686249394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703599746</galeid><doaj_id>oai_doaj_org_article_2f94b06edcd249d78f60affb5306e9b3</doaj_id><sourcerecordid>A703599746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-9bcac742947c13541e39fc2d5c455ca10dab57dcd80ddaffaae0e0daa25186b73</originalsourceid><addsrcrecordid>eNqNk19r2zAUxc3YWLtu32BsgsFYH5JJliXbL4NQtjUQKOzfq5Al2VZRLNeSu-Xb73pxS1L6MPxgc_Q750rXuknymuAloTn5eO3HoZNu2fvOLHHKiyxnT5JTUtJ0wVNMnx58nyQvQrjGmNGC8-fJCWWMY5oWp0m_QtH33vnGKumQllEiCbG7YMOiksFotDWx9RrVfkCNtBEF2wAQ0G8bW2CR7HsH5mh9B1kotgaFOOod8jXaji7a3oGinBk8hL5MntXgNq_m91ny88vnHxeXi83V1_XFarNQecrjoqyUVHmWllmuCGUZMbSsVaqZyhhTkmAtK5ZrpQustaxrKQ02IMqUkYJXOT1L3u5ze-eDmJsVBPSJp1lJywyI9Z7QXl6LfrBbOeyEl1b8E_zQCDlECxsXaV1mFeYG6oFZ50XNMRStGAWxrChkfZqrjdUWMNPFQbqj0OOVzrai8beiJJiTfAo43we0D2yXq42YNEx5TtKC3RJgP8zFBn8zmhDF1gZlnJOd8eN0Rp4VmDI6deHdA_TxTsxUI-Gwtqs97FFNoWKVQ1BZ5hkHavkIBY82W6vgFtYW9CPD-ZEBmGj-xEaOIYj192__z179OmbfH7CtkS62wbtxuoHhGMz2oIKrFwZT33eWYDEN0V03xDREYh4isL05_Jn3prupoX8B_I4YqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686249394</pqid></control><display><type>article</type><title>A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Bois, Alexandre ; Tervil, Brian ; Moreau, Albane ; Vienne-Jumeau, Aliénor ; Ricard, Damien ; Oudre, Laurent</creator><creatorcontrib>Bois, Alexandre ; Tervil, Brian ; Moreau, Albane ; Vienne-Jumeau, Aliénor ; Ricard, Damien ; Oudre, Laurent</creatorcontrib><description>In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but they fail to detect subtle changes in several pathologies including multiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system whose symptoms include lower limb impairment, which is why gait trials are commonly used by clinicians for their patients' follow-up. This article describes a method to compare pairs of gait signals, visualize the results and interpret them, based on topological data analysis techniques. Our method is non-parametric and requires no data other than gait signals acquired with inertial measurement units. We introduce tools from topological data analysis (sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible in order to encourage its use by clinicians. We apply our method to study a cohort of patients suffering from progressive multiple sclerosis and healthy subjects. We show that it can help estimate the severity of the disease and also be used for longitudinal follow-up to detect an evolution of the disease or other phenomena such as asymmetry or outliers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0268475</identifier><identifier>PMID: 35560328</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Autoimmune diseases ; Bioengineering ; Biology and Life Sciences ; Biomechanical Phenomena ; Biomechanics ; Central nervous system ; Clinical trials ; Complications and side effects ; Data Analysis ; Demyelinating diseases ; Demyelination ; Engineering Sciences ; Gait ; Gait - physiology ; Gene expression ; Health aspects ; Humans ; Inertial platforms ; Life Sciences ; Lower Extremity ; Mechanics ; Medicine and Health Sciences ; Motion capture ; Multiple Sclerosis ; Neurons and Cognition ; Outliers (statistics) ; Parkinson's disease ; Parkinsons disease ; Patient outcomes ; Physical Sciences ; Physiological aspects ; Research and Analysis Methods ; Signs and symptoms ; Time series ; Topology ; Velocity ; Walking</subject><ispartof>PloS one, 2022-05, Vol.17 (5), p.e0268475-e0268475</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Bois et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2022 Bois et al 2022 Bois et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-9bcac742947c13541e39fc2d5c455ca10dab57dcd80ddaffaae0e0daa25186b73</citedby><cites>FETCH-LOGICAL-c726t-9bcac742947c13541e39fc2d5c455ca10dab57dcd80ddaffaae0e0daa25186b73</cites><orcidid>0000-0003-2765-7961 ; 0000-0002-7275-2717 ; 0000-0002-4750-2265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106173/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106173/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35560328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03671285$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bois, Alexandre</creatorcontrib><creatorcontrib>Tervil, Brian</creatorcontrib><creatorcontrib>Moreau, Albane</creatorcontrib><creatorcontrib>Vienne-Jumeau, Aliénor</creatorcontrib><creatorcontrib>Ricard, Damien</creatorcontrib><creatorcontrib>Oudre, Laurent</creatorcontrib><title>A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but they fail to detect subtle changes in several pathologies including multiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system whose symptoms include lower limb impairment, which is why gait trials are commonly used by clinicians for their patients' follow-up. This article describes a method to compare pairs of gait signals, visualize the results and interpret them, based on topological data analysis techniques. Our method is non-parametric and requires no data other than gait signals acquired with inertial measurement units. We introduce tools from topological data analysis (sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible in order to encourage its use by clinicians. We apply our method to study a cohort of patients suffering from progressive multiple sclerosis and healthy subjects. We show that it can help estimate the severity of the disease and also be used for longitudinal follow-up to detect an evolution of the disease or other phenomena such as asymmetry or outliers.</description><subject>Algorithms</subject><subject>Autoimmune diseases</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Central nervous system</subject><subject>Clinical trials</subject><subject>Complications and side effects</subject><subject>Data Analysis</subject><subject>Demyelinating diseases</subject><subject>Demyelination</subject><subject>Engineering Sciences</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Gene expression</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Inertial platforms</subject><subject>Life Sciences</subject><subject>Lower Extremity</subject><subject>Mechanics</subject><subject>Medicine and Health Sciences</subject><subject>Motion capture</subject><subject>Multiple Sclerosis</subject><subject>Neurons and Cognition</subject><subject>Outliers (statistics)</subject><subject>Parkinson's disease</subject><subject>Parkinsons disease</subject><subject>Patient outcomes</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Signs and symptoms</subject><subject>Time series</subject><subject>Topology</subject><subject>Velocity</subject><subject>Walking</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19r2zAUxc3YWLtu32BsgsFYH5JJliXbL4NQtjUQKOzfq5Al2VZRLNeSu-Xb73pxS1L6MPxgc_Q750rXuknymuAloTn5eO3HoZNu2fvOLHHKiyxnT5JTUtJ0wVNMnx58nyQvQrjGmNGC8-fJCWWMY5oWp0m_QtH33vnGKumQllEiCbG7YMOiksFotDWx9RrVfkCNtBEF2wAQ0G8bW2CR7HsH5mh9B1kotgaFOOod8jXaji7a3oGinBk8hL5MntXgNq_m91ny88vnHxeXi83V1_XFarNQecrjoqyUVHmWllmuCGUZMbSsVaqZyhhTkmAtK5ZrpQustaxrKQ02IMqUkYJXOT1L3u5ze-eDmJsVBPSJp1lJywyI9Z7QXl6LfrBbOeyEl1b8E_zQCDlECxsXaV1mFeYG6oFZ50XNMRStGAWxrChkfZqrjdUWMNPFQbqj0OOVzrai8beiJJiTfAo43we0D2yXq42YNEx5TtKC3RJgP8zFBn8zmhDF1gZlnJOd8eN0Rp4VmDI6deHdA_TxTsxUI-Gwtqs97FFNoWKVQ1BZ5hkHavkIBY82W6vgFtYW9CPD-ZEBmGj-xEaOIYj192__z179OmbfH7CtkS62wbtxuoHhGMz2oIKrFwZT33eWYDEN0V03xDREYh4isL05_Jn3prupoX8B_I4YqA</recordid><startdate>20220513</startdate><enddate>20220513</enddate><creator>Bois, Alexandre</creator><creator>Tervil, Brian</creator><creator>Moreau, Albane</creator><creator>Vienne-Jumeau, Aliénor</creator><creator>Ricard, Damien</creator><creator>Oudre, Laurent</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2765-7961</orcidid><orcidid>https://orcid.org/0000-0002-7275-2717</orcidid><orcidid>https://orcid.org/0000-0002-4750-2265</orcidid></search><sort><creationdate>20220513</creationdate><title>A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis</title><author>Bois, Alexandre ; Tervil, Brian ; Moreau, Albane ; Vienne-Jumeau, Aliénor ; Ricard, Damien ; Oudre, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-9bcac742947c13541e39fc2d5c455ca10dab57dcd80ddaffaae0e0daa25186b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autoimmune diseases</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Central nervous system</topic><topic>Clinical trials</topic><topic>Complications and side effects</topic><topic>Data Analysis</topic><topic>Demyelinating diseases</topic><topic>Demyelination</topic><topic>Engineering Sciences</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Gene expression</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Inertial platforms</topic><topic>Life Sciences</topic><topic>Lower Extremity</topic><topic>Mechanics</topic><topic>Medicine and Health Sciences</topic><topic>Motion capture</topic><topic>Multiple Sclerosis</topic><topic>Neurons and Cognition</topic><topic>Outliers (statistics)</topic><topic>Parkinson's disease</topic><topic>Parkinsons disease</topic><topic>Patient outcomes</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Signs and symptoms</topic><topic>Time series</topic><topic>Topology</topic><topic>Velocity</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bois, Alexandre</creatorcontrib><creatorcontrib>Tervil, Brian</creatorcontrib><creatorcontrib>Moreau, Albane</creatorcontrib><creatorcontrib>Vienne-Jumeau, Aliénor</creatorcontrib><creatorcontrib>Ricard, Damien</creatorcontrib><creatorcontrib>Oudre, Laurent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bois, Alexandre</au><au>Tervil, Brian</au><au>Moreau, Albane</au><au>Vienne-Jumeau, Aliénor</au><au>Ricard, Damien</au><au>Oudre, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-05-13</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>e0268475</spage><epage>e0268475</epage><pages>e0268475-e0268475</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but they fail to detect subtle changes in several pathologies including multiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system whose symptoms include lower limb impairment, which is why gait trials are commonly used by clinicians for their patients' follow-up. This article describes a method to compare pairs of gait signals, visualize the results and interpret them, based on topological data analysis techniques. Our method is non-parametric and requires no data other than gait signals acquired with inertial measurement units. We introduce tools from topological data analysis (sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible in order to encourage its use by clinicians. We apply our method to study a cohort of patients suffering from progressive multiple sclerosis and healthy subjects. We show that it can help estimate the severity of the disease and also be used for longitudinal follow-up to detect an evolution of the disease or other phenomena such as asymmetry or outliers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35560328</pmid><doi>10.1371/journal.pone.0268475</doi><tpages>e0268475</tpages><orcidid>https://orcid.org/0000-0003-2765-7961</orcidid><orcidid>https://orcid.org/0000-0002-7275-2717</orcidid><orcidid>https://orcid.org/0000-0002-4750-2265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-05, Vol.17 (5), p.e0268475-e0268475
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2686249394
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Autoimmune diseases
Bioengineering
Biology and Life Sciences
Biomechanical Phenomena
Biomechanics
Central nervous system
Clinical trials
Complications and side effects
Data Analysis
Demyelinating diseases
Demyelination
Engineering Sciences
Gait
Gait - physiology
Gene expression
Health aspects
Humans
Inertial platforms
Life Sciences
Lower Extremity
Mechanics
Medicine and Health Sciences
Motion capture
Multiple Sclerosis
Neurons and Cognition
Outliers (statistics)
Parkinson's disease
Parkinsons disease
Patient outcomes
Physical Sciences
Physiological aspects
Research and Analysis Methods
Signs and symptoms
Time series
Topology
Velocity
Walking
title A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20topological%20data%20analysis-based%20method%20for%20gait%20signals%20with%20an%20application%20to%20the%20study%20of%20multiple%20sclerosis&rft.jtitle=PloS%20one&rft.au=Bois,%20Alexandre&rft.date=2022-05-13&rft.volume=17&rft.issue=5&rft.spage=e0268475&rft.epage=e0268475&rft.pages=e0268475-e0268475&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0268475&rft_dat=%3Cgale_plos_%3EA703599746%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686249394&rft_id=info:pmid/35560328&rft_galeid=A703599746&rft_doaj_id=oai_doaj_org_article_2f94b06edcd249d78f60affb5306e9b3&rfr_iscdi=true