Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams
In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam sp...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-05, Vol.17 (5), p.e0268087-e0268087 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0268087 |
---|---|
container_issue | 5 |
container_start_page | e0268087 |
container_title | PloS one |
container_volume | 17 |
creator | Yagi, Masashi Tsubouchi, Toshiro Hamatani, Noriaki Takashina, Masaaki Maruo, Hiroyasu Fujitaka, Shinichiro Nihongi, Hideaki Ogawa, Kazuhiko Kanai, Tatsuaki |
description | In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam splitting algorithm to consider lateral heterogeneity in a medium. We adopted the mixed beam model as the relative biological effectiveness (RBE) model for calculating the RBE values of the scanned carbon-ion beam. To validate the modeled physical dose, we compared the calculations with measurements of various relevant quantities as functions of the field size, range and width of the spread-out Bragg peak (SOBP), and depth-dose and lateral-dose profiles for a 6-mm SOBP in water. To model the biological dose, we compared the RBE calculated with the newly developed TPS to the RBE calculated with a previously validated TPS that is in clinical use and uses the same RBE model concept. We also performed patient-specific measurements to validate the dose model in clinical situations. The physical beam model reproduces the measured absolute dose at the center of the SOBP as a function of field size, range, and SOBP width and reproduces the dose profiles for a 6-mm SOBP in water. However, the profiles calculated for a heterogeneous phantom have some limitations in predicting the carbon-ion-beam dose, although the biological doses agreed well with the values calculated by the validated TPS. Using this dose model for fast-raster scanning, we successfully treated more than 900 patients from October 2018 to October 2020, with an acceptable agreement between the TPS-calculated and measured dose distributions. We conclude that the newly developed TPS can be used clinically with the understanding that it has limited accuracies for heterogeneous media. |
doi_str_mv | 10.1371/journal.pone.0268087 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686245741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703138505</galeid><doaj_id>oai_doaj_org_article_01131c0845e74d48a6d00012e1dc0499</doaj_id><sourcerecordid>A703138505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4b6e0e001bbf5ca5bcb9d8aada16ddb94e98e3975b49a8f21dcf03889a8d296d3</originalsourceid><addsrcrecordid>eNqNk2tr2zAUhs3YWLts_2BsgsLYoMkky5alL4MQdgkUumu_Clk6ThxsK5Xkbvn3Uxq3xKMfhsGX4-e8R3p1TpK8JHhGaEHeb2zvOtXMtraDGU4Zx7x4lJwSQdMpSzF9fPR-kjzzfoNxTjljT5MTmueU8Tw9Ta4Xtm1r72vb1d0KKdTB72aHDNxAY7dgUHCgQgtdQNtGdbeQ3_kA7Tm6-jZHX2PwHFXWoUr5MHXxBg55PaC2Qlq50nbTWACVoFr_PHlSqcbDi-E5SX59-vhz8WV6cfl5uZhfTDUTaZhmJQMMGJOyrHKt8lKXwnCljCLMmFJkIDhQUeRlJhSvUmJ0hSnn8cOkghk6SV4fdLeN9XJwy8toFEuzvMhIJJYHwli1kVtXt8rtpFW1vA1Yt5LKhVo3IDEhlGjMsxyKzGRcMYPj2lKIZXEmRNT6MFTryxaMjoY51YxEx3-6ei1X9kYKzAUviijwdhBw9roHH2Q8Fg1N9Bdsv183IyJPc0EjevYP-vDuBmql4gbqrrKxrt6LynmBKaE8j_0wSWYPUPEy0NY6tlZVx_go4d0oITIB_oSV6r2Xyx_f_5-9vBqzb47YNagmrL1t-hAbx4_B7ABqZ713UN2bTLDcT8adG3I_GXKYjJj26viA7pPuRoH-BaPQCUs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686245741</pqid></control><display><type>article</type><title>Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yagi, Masashi ; Tsubouchi, Toshiro ; Hamatani, Noriaki ; Takashina, Masaaki ; Maruo, Hiroyasu ; Fujitaka, Shinichiro ; Nihongi, Hideaki ; Ogawa, Kazuhiko ; Kanai, Tatsuaki</creator><contributor>Specht, Aaron</contributor><creatorcontrib>Yagi, Masashi ; Tsubouchi, Toshiro ; Hamatani, Noriaki ; Takashina, Masaaki ; Maruo, Hiroyasu ; Fujitaka, Shinichiro ; Nihongi, Hideaki ; Ogawa, Kazuhiko ; Kanai, Tatsuaki ; Specht, Aaron</creatorcontrib><description>In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam splitting algorithm to consider lateral heterogeneity in a medium. We adopted the mixed beam model as the relative biological effectiveness (RBE) model for calculating the RBE values of the scanned carbon-ion beam. To validate the modeled physical dose, we compared the calculations with measurements of various relevant quantities as functions of the field size, range and width of the spread-out Bragg peak (SOBP), and depth-dose and lateral-dose profiles for a 6-mm SOBP in water. To model the biological dose, we compared the RBE calculated with the newly developed TPS to the RBE calculated with a previously validated TPS that is in clinical use and uses the same RBE model concept. We also performed patient-specific measurements to validate the dose model in clinical situations. The physical beam model reproduces the measured absolute dose at the center of the SOBP as a function of field size, range, and SOBP width and reproduces the dose profiles for a 6-mm SOBP in water. However, the profiles calculated for a heterogeneous phantom have some limitations in predicting the carbon-ion-beam dose, although the biological doses agreed well with the values calculated by the validated TPS. Using this dose model for fast-raster scanning, we successfully treated more than 900 patients from October 2018 to October 2020, with an acceptable agreement between the TPS-calculated and measured dose distributions. We conclude that the newly developed TPS can be used clinically with the understanding that it has limited accuracies for heterogeneous media.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0268087</identifier><identifier>PMID: 35536852</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Beam splitters ; Biological effects ; Biology and Life Sciences ; Bragg curve ; Calibration ; Carbon ; Charged particles ; Clinical trials ; Commissioning ; Dosimetry ; Engineering and Technology ; Evaluation ; Gaussian beams (optics) ; Heterogeneity ; Ion beams ; Ions ; Linear energy transfer ; Mathematical models ; Medicine and Health Sciences ; Modelling ; Patients ; Physical Sciences ; Planning ; Radiation therapy ; Raster ; Raster scanning ; Relative biological effectiveness (RBE) ; Research and Analysis Methods ; Scanners ; Scanning ; Tumors ; Water depth</subject><ispartof>PloS one, 2022-05, Vol.17 (5), p.e0268087-e0268087</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Yagi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Yagi et al 2022 Yagi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4b6e0e001bbf5ca5bcb9d8aada16ddb94e98e3975b49a8f21dcf03889a8d296d3</citedby><cites>FETCH-LOGICAL-c692t-4b6e0e001bbf5ca5bcb9d8aada16ddb94e98e3975b49a8f21dcf03889a8d296d3</cites><orcidid>0000-0002-2827-5407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089877/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089877/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35536852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Specht, Aaron</contributor><creatorcontrib>Yagi, Masashi</creatorcontrib><creatorcontrib>Tsubouchi, Toshiro</creatorcontrib><creatorcontrib>Hamatani, Noriaki</creatorcontrib><creatorcontrib>Takashina, Masaaki</creatorcontrib><creatorcontrib>Maruo, Hiroyasu</creatorcontrib><creatorcontrib>Fujitaka, Shinichiro</creatorcontrib><creatorcontrib>Nihongi, Hideaki</creatorcontrib><creatorcontrib>Ogawa, Kazuhiko</creatorcontrib><creatorcontrib>Kanai, Tatsuaki</creatorcontrib><title>Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam splitting algorithm to consider lateral heterogeneity in a medium. We adopted the mixed beam model as the relative biological effectiveness (RBE) model for calculating the RBE values of the scanned carbon-ion beam. To validate the modeled physical dose, we compared the calculations with measurements of various relevant quantities as functions of the field size, range and width of the spread-out Bragg peak (SOBP), and depth-dose and lateral-dose profiles for a 6-mm SOBP in water. To model the biological dose, we compared the RBE calculated with the newly developed TPS to the RBE calculated with a previously validated TPS that is in clinical use and uses the same RBE model concept. We also performed patient-specific measurements to validate the dose model in clinical situations. The physical beam model reproduces the measured absolute dose at the center of the SOBP as a function of field size, range, and SOBP width and reproduces the dose profiles for a 6-mm SOBP in water. However, the profiles calculated for a heterogeneous phantom have some limitations in predicting the carbon-ion-beam dose, although the biological doses agreed well with the values calculated by the validated TPS. Using this dose model for fast-raster scanning, we successfully treated more than 900 patients from October 2018 to October 2020, with an acceptable agreement between the TPS-calculated and measured dose distributions. We conclude that the newly developed TPS can be used clinically with the understanding that it has limited accuracies for heterogeneous media.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Beam splitters</subject><subject>Biological effects</subject><subject>Biology and Life Sciences</subject><subject>Bragg curve</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Charged particles</subject><subject>Clinical trials</subject><subject>Commissioning</subject><subject>Dosimetry</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Gaussian beams (optics)</subject><subject>Heterogeneity</subject><subject>Ion beams</subject><subject>Ions</subject><subject>Linear energy transfer</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Planning</subject><subject>Radiation therapy</subject><subject>Raster</subject><subject>Raster scanning</subject><subject>Relative biological effectiveness (RBE)</subject><subject>Research and Analysis Methods</subject><subject>Scanners</subject><subject>Scanning</subject><subject>Tumors</subject><subject>Water depth</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2tr2zAUhs3YWLts_2BsgsLYoMkky5alL4MQdgkUumu_Clk6ThxsK5Xkbvn3Uxq3xKMfhsGX4-e8R3p1TpK8JHhGaEHeb2zvOtXMtraDGU4Zx7x4lJwSQdMpSzF9fPR-kjzzfoNxTjljT5MTmueU8Tw9Ta4Xtm1r72vb1d0KKdTB72aHDNxAY7dgUHCgQgtdQNtGdbeQ3_kA7Tm6-jZHX2PwHFXWoUr5MHXxBg55PaC2Qlq50nbTWACVoFr_PHlSqcbDi-E5SX59-vhz8WV6cfl5uZhfTDUTaZhmJQMMGJOyrHKt8lKXwnCljCLMmFJkIDhQUeRlJhSvUmJ0hSnn8cOkghk6SV4fdLeN9XJwy8toFEuzvMhIJJYHwli1kVtXt8rtpFW1vA1Yt5LKhVo3IDEhlGjMsxyKzGRcMYPj2lKIZXEmRNT6MFTryxaMjoY51YxEx3-6ei1X9kYKzAUviijwdhBw9roHH2Q8Fg1N9Bdsv183IyJPc0EjevYP-vDuBmql4gbqrrKxrt6LynmBKaE8j_0wSWYPUPEy0NY6tlZVx_go4d0oITIB_oSV6r2Xyx_f_5-9vBqzb47YNagmrL1t-hAbx4_B7ABqZ713UN2bTLDcT8adG3I_GXKYjJj26viA7pPuRoH-BaPQCUs</recordid><startdate>20220510</startdate><enddate>20220510</enddate><creator>Yagi, Masashi</creator><creator>Tsubouchi, Toshiro</creator><creator>Hamatani, Noriaki</creator><creator>Takashina, Masaaki</creator><creator>Maruo, Hiroyasu</creator><creator>Fujitaka, Shinichiro</creator><creator>Nihongi, Hideaki</creator><creator>Ogawa, Kazuhiko</creator><creator>Kanai, Tatsuaki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2827-5407</orcidid></search><sort><creationdate>20220510</creationdate><title>Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams</title><author>Yagi, Masashi ; Tsubouchi, Toshiro ; Hamatani, Noriaki ; Takashina, Masaaki ; Maruo, Hiroyasu ; Fujitaka, Shinichiro ; Nihongi, Hideaki ; Ogawa, Kazuhiko ; Kanai, Tatsuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4b6e0e001bbf5ca5bcb9d8aada16ddb94e98e3975b49a8f21dcf03889a8d296d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Beam splitters</topic><topic>Biological effects</topic><topic>Biology and Life Sciences</topic><topic>Bragg curve</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Charged particles</topic><topic>Clinical trials</topic><topic>Commissioning</topic><topic>Dosimetry</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Gaussian beams (optics)</topic><topic>Heterogeneity</topic><topic>Ion beams</topic><topic>Ions</topic><topic>Linear energy transfer</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Planning</topic><topic>Radiation therapy</topic><topic>Raster</topic><topic>Raster scanning</topic><topic>Relative biological effectiveness (RBE)</topic><topic>Research and Analysis Methods</topic><topic>Scanners</topic><topic>Scanning</topic><topic>Tumors</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yagi, Masashi</creatorcontrib><creatorcontrib>Tsubouchi, Toshiro</creatorcontrib><creatorcontrib>Hamatani, Noriaki</creatorcontrib><creatorcontrib>Takashina, Masaaki</creatorcontrib><creatorcontrib>Maruo, Hiroyasu</creatorcontrib><creatorcontrib>Fujitaka, Shinichiro</creatorcontrib><creatorcontrib>Nihongi, Hideaki</creatorcontrib><creatorcontrib>Ogawa, Kazuhiko</creatorcontrib><creatorcontrib>Kanai, Tatsuaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yagi, Masashi</au><au>Tsubouchi, Toshiro</au><au>Hamatani, Noriaki</au><au>Takashina, Masaaki</au><au>Maruo, Hiroyasu</au><au>Fujitaka, Shinichiro</au><au>Nihongi, Hideaki</au><au>Ogawa, Kazuhiko</au><au>Kanai, Tatsuaki</au><au>Specht, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-05-10</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>e0268087</spage><epage>e0268087</epage><pages>e0268087-e0268087</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam splitting algorithm to consider lateral heterogeneity in a medium. We adopted the mixed beam model as the relative biological effectiveness (RBE) model for calculating the RBE values of the scanned carbon-ion beam. To validate the modeled physical dose, we compared the calculations with measurements of various relevant quantities as functions of the field size, range and width of the spread-out Bragg peak (SOBP), and depth-dose and lateral-dose profiles for a 6-mm SOBP in water. To model the biological dose, we compared the RBE calculated with the newly developed TPS to the RBE calculated with a previously validated TPS that is in clinical use and uses the same RBE model concept. We also performed patient-specific measurements to validate the dose model in clinical situations. The physical beam model reproduces the measured absolute dose at the center of the SOBP as a function of field size, range, and SOBP width and reproduces the dose profiles for a 6-mm SOBP in water. However, the profiles calculated for a heterogeneous phantom have some limitations in predicting the carbon-ion-beam dose, although the biological doses agreed well with the values calculated by the validated TPS. Using this dose model for fast-raster scanning, we successfully treated more than 900 patients from October 2018 to October 2020, with an acceptable agreement between the TPS-calculated and measured dose distributions. We conclude that the newly developed TPS can be used clinically with the understanding that it has limited accuracies for heterogeneous media.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35536852</pmid><doi>10.1371/journal.pone.0268087</doi><tpages>e0268087</tpages><orcidid>https://orcid.org/0000-0002-2827-5407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-05, Vol.17 (5), p.e0268087-e0268087 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2686245741 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Beam splitters Biological effects Biology and Life Sciences Bragg curve Calibration Carbon Charged particles Clinical trials Commissioning Dosimetry Engineering and Technology Evaluation Gaussian beams (optics) Heterogeneity Ion beams Ions Linear energy transfer Mathematical models Medicine and Health Sciences Modelling Patients Physical Sciences Planning Radiation therapy Raster Raster scanning Relative biological effectiveness (RBE) Research and Analysis Methods Scanners Scanning Tumors Water depth |
title | Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commissioning%20a%20newly%20developed%20treatment%20planning%20system,%20VQA%20Plan,%20for%20fast-raster%20scanning%20of%20carbon-ion%20beams&rft.jtitle=PloS%20one&rft.au=Yagi,%20Masashi&rft.date=2022-05-10&rft.volume=17&rft.issue=5&rft.spage=e0268087&rft.epage=e0268087&rft.pages=e0268087-e0268087&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0268087&rft_dat=%3Cgale_plos_%3EA703138505%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686245741&rft_id=info:pmid/35536852&rft_galeid=A703138505&rft_doaj_id=oai_doaj_org_article_01131c0845e74d48a6d00012e1dc0499&rfr_iscdi=true |