Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke

Pial collateral blood flow is a major determinant of the outcomes of acute ischemic stroke. This study was undertaken to determine whether retinal vessel metrics can predict the pial collateral status and stroke outcomes in patients. Thirty-five patients with acute stroke secondary to middle cerebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-05, Vol.17 (5), p.e0267837
Hauptverfasser: Khan, Adnan, De Boever, Patrick, Gerrits, Nele, Akhtar, Naveed, Saqqur, Maher, Ponirakis, Georgios, Gad, Hoda, Petropoulos, Ioannis N, Shuaib, Ashfaq, Faber, James E, Kamran, Saadat, Malik, Rayaz A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0267837
container_title PloS one
container_volume 17
creator Khan, Adnan
De Boever, Patrick
Gerrits, Nele
Akhtar, Naveed
Saqqur, Maher
Ponirakis, Georgios
Gad, Hoda
Petropoulos, Ioannis N
Shuaib, Ashfaq
Faber, James E
Kamran, Saadat
Malik, Rayaz A
description Pial collateral blood flow is a major determinant of the outcomes of acute ischemic stroke. This study was undertaken to determine whether retinal vessel metrics can predict the pial collateral status and stroke outcomes in patients. Thirty-five patients with acute stroke secondary to middle cerebral artery (MCA) occlusion underwent grading of their pial collateral status from computed tomography angiography and retinal vessel analysis from retinal fundus images. The NIHSS (14.7 ± 5.5 vs 10.1 ± 5.8, p = 0.026) and mRS (2.9 ± 1.6 vs 1.9 ± 1.3, p = 0.048) scores were higher at admission in patients with poor compared to good pial collaterals. Retinal vessel multifractals: D0 (1.673±0.028vs1.652±0.025, p = 0.028), D1 (1.609±0.027vs1.590±0.025, p = 0.044) and f(α)max (1.674±0.027vs1.652±0.024, p = 0.019) were higher in patients with poor compared to good pial collaterals. Furthermore, support vector machine learning achieved a fair sensitivity (0.743) and specificity (0.707) for differentiating patients with poor from good pial collaterals. Age (p = 0.702), BMI (p = 0.422), total cholesterol (p = 0.842), triglycerides (p = 0.673), LDL (p = 0.952), HDL (p = 0.366), systolic blood pressure (p = 0.727), HbA1c (p = 0.261) and standard retinal metrics including CRAE (p = 0.084), CRVE (p = 0.946), AVR (p = 0.148), tortuosity index (p = 0.790), monofractal Df (p = 0.576), lacunarity (p = 0.531), curve asymmetry (p = 0.679) and singularity length (p = 0.937) did not differ between patients with poor compared to good pial collaterals. This is the first translational study to show increased retinal vessel multifractal dimensions in patients with acute ischemic stroke and poor pial collaterals. A retinal vessel classifier was developed to differentiate between patients with poor and good pial collaterals and may allow rapid non-invasive identification of patients with poor pial collaterals.
doi_str_mv 10.1371/journal.pone.0267837
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686209926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702605829</galeid><doaj_id>oai_doaj_org_article_12d7016e314349ce95e386677eb35cfc</doaj_id><sourcerecordid>A702605829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9130b9c5cee778e094ff4ba2d0c3c14fd82b40b85e5496a97243d65a447632be3</originalsourceid><addsrcrecordid>eNqNkluL1DAYhoso7rr6D0QLguDFjDk1aW6EZfEwsLCwHm5Dmn6dZmybbpKu-u_NON1lCgrSi4b0-d6GJ2-WPcdojanAb3du8oPu1qMbYI0IFyUVD7JTLClZcYLow6P1SfYkhB1CBS05f5yd0KLAuBTyNKuuIdoUk99CCNDl_dRF23htou5CPnqorYn5aBNhXNfpCD4tQ9RxCrkd8lFHC0MM-Q8b21ybKUJug2mhtyZh3n2Hp9mjJoXBs_l9ln398P7LxafV5dXHzcX55cpwSeJKYooqaQoDIEQJSLKmYZUmNTLUYNbUJakYqsoCCia5loIwWvNCMyY4JRXQs-zlIXfsXFCznqAIL5MCKQlPxOZA1E7v1Ohtr_0v5bRVfzac3yrtozUdKExqgTAHihll0oAsYO9OCKhoYRqTst7Nf5uqHmqTJCQzi9Dll8G2autulUQClaVIAa_mAO9uJgjxH0eeqa1Op7JD41KY6ZNidS7SraOiJDJR679Q6an395AK0ti0vxh4sxhITISfcaunENTm8_X_s1ffluzrI7YF3cU2uG6K1g1hCbIDaLwLwUNzbw4jte_3nQ2177ea-53GXhxbvx-6KzT9DXjI9po</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686209926</pqid></control><display><type>article</type><title>Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Khan, Adnan ; De Boever, Patrick ; Gerrits, Nele ; Akhtar, Naveed ; Saqqur, Maher ; Ponirakis, Georgios ; Gad, Hoda ; Petropoulos, Ioannis N ; Shuaib, Ashfaq ; Faber, James E ; Kamran, Saadat ; Malik, Rayaz A</creator><creatorcontrib>Khan, Adnan ; De Boever, Patrick ; Gerrits, Nele ; Akhtar, Naveed ; Saqqur, Maher ; Ponirakis, Georgios ; Gad, Hoda ; Petropoulos, Ioannis N ; Shuaib, Ashfaq ; Faber, James E ; Kamran, Saadat ; Malik, Rayaz A</creatorcontrib><description>Pial collateral blood flow is a major determinant of the outcomes of acute ischemic stroke. This study was undertaken to determine whether retinal vessel metrics can predict the pial collateral status and stroke outcomes in patients. Thirty-five patients with acute stroke secondary to middle cerebral artery (MCA) occlusion underwent grading of their pial collateral status from computed tomography angiography and retinal vessel analysis from retinal fundus images. The NIHSS (14.7 ± 5.5 vs 10.1 ± 5.8, p = 0.026) and mRS (2.9 ± 1.6 vs 1.9 ± 1.3, p = 0.048) scores were higher at admission in patients with poor compared to good pial collaterals. Retinal vessel multifractals: D0 (1.673±0.028vs1.652±0.025, p = 0.028), D1 (1.609±0.027vs1.590±0.025, p = 0.044) and f(α)max (1.674±0.027vs1.652±0.024, p = 0.019) were higher in patients with poor compared to good pial collaterals. Furthermore, support vector machine learning achieved a fair sensitivity (0.743) and specificity (0.707) for differentiating patients with poor from good pial collaterals. Age (p = 0.702), BMI (p = 0.422), total cholesterol (p = 0.842), triglycerides (p = 0.673), LDL (p = 0.952), HDL (p = 0.366), systolic blood pressure (p = 0.727), HbA1c (p = 0.261) and standard retinal metrics including CRAE (p = 0.084), CRVE (p = 0.946), AVR (p = 0.148), tortuosity index (p = 0.790), monofractal Df (p = 0.576), lacunarity (p = 0.531), curve asymmetry (p = 0.679) and singularity length (p = 0.937) did not differ between patients with poor compared to good pial collaterals. This is the first translational study to show increased retinal vessel multifractal dimensions in patients with acute ischemic stroke and poor pial collaterals. A retinal vessel classifier was developed to differentiate between patients with poor and good pial collaterals and may allow rapid non-invasive identification of patients with poor pial collaterals.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0267837</identifier><identifier>PMID: 35511879</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Angiography ; Biology and Life Sciences ; Blood flow ; Blood pressure ; Blood vessels ; Brain Ischemia - diagnostic imaging ; Care and treatment ; Cerebral Angiography - methods ; Cerebral blood flow ; Cholesterol ; Collateral Circulation - physiology ; Computed tomography ; Computer and Information Sciences ; CT imaging ; Evaluation ; Fractal geometry ; Fractals ; High density lipoprotein ; Humans ; Infarction, Middle Cerebral Artery ; Ischemia ; Ischemic Stroke ; Low density lipoprotein ; Machine learning ; Medicine and Health Sciences ; Occlusion ; Physical Sciences ; Research and Analysis Methods ; Retina ; Retinal Vessels - diagnostic imaging ; Retrospective Studies ; Stroke ; Stroke (Disease) ; Stroke - diagnostic imaging ; Support vector machines ; Tomography ; Tortuosity ; Triglycerides ; Veins &amp; arteries</subject><ispartof>PloS one, 2022-05, Vol.17 (5), p.e0267837</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Khan et al 2022 Khan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9130b9c5cee778e094ff4ba2d0c3c14fd82b40b85e5496a97243d65a447632be3</citedby><cites>FETCH-LOGICAL-c692t-9130b9c5cee778e094ff4ba2d0c3c14fd82b40b85e5496a97243d65a447632be3</cites><orcidid>0000-0003-4647-6672 ; 0000-0002-5197-8215 ; 0000-0002-1126-7638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070887/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070887/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35511879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Adnan</creatorcontrib><creatorcontrib>De Boever, Patrick</creatorcontrib><creatorcontrib>Gerrits, Nele</creatorcontrib><creatorcontrib>Akhtar, Naveed</creatorcontrib><creatorcontrib>Saqqur, Maher</creatorcontrib><creatorcontrib>Ponirakis, Georgios</creatorcontrib><creatorcontrib>Gad, Hoda</creatorcontrib><creatorcontrib>Petropoulos, Ioannis N</creatorcontrib><creatorcontrib>Shuaib, Ashfaq</creatorcontrib><creatorcontrib>Faber, James E</creatorcontrib><creatorcontrib>Kamran, Saadat</creatorcontrib><creatorcontrib>Malik, Rayaz A</creatorcontrib><title>Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pial collateral blood flow is a major determinant of the outcomes of acute ischemic stroke. This study was undertaken to determine whether retinal vessel metrics can predict the pial collateral status and stroke outcomes in patients. Thirty-five patients with acute stroke secondary to middle cerebral artery (MCA) occlusion underwent grading of their pial collateral status from computed tomography angiography and retinal vessel analysis from retinal fundus images. The NIHSS (14.7 ± 5.5 vs 10.1 ± 5.8, p = 0.026) and mRS (2.9 ± 1.6 vs 1.9 ± 1.3, p = 0.048) scores were higher at admission in patients with poor compared to good pial collaterals. Retinal vessel multifractals: D0 (1.673±0.028vs1.652±0.025, p = 0.028), D1 (1.609±0.027vs1.590±0.025, p = 0.044) and f(α)max (1.674±0.027vs1.652±0.024, p = 0.019) were higher in patients with poor compared to good pial collaterals. Furthermore, support vector machine learning achieved a fair sensitivity (0.743) and specificity (0.707) for differentiating patients with poor from good pial collaterals. Age (p = 0.702), BMI (p = 0.422), total cholesterol (p = 0.842), triglycerides (p = 0.673), LDL (p = 0.952), HDL (p = 0.366), systolic blood pressure (p = 0.727), HbA1c (p = 0.261) and standard retinal metrics including CRAE (p = 0.084), CRVE (p = 0.946), AVR (p = 0.148), tortuosity index (p = 0.790), monofractal Df (p = 0.576), lacunarity (p = 0.531), curve asymmetry (p = 0.679) and singularity length (p = 0.937) did not differ between patients with poor compared to good pial collaterals. This is the first translational study to show increased retinal vessel multifractal dimensions in patients with acute ischemic stroke and poor pial collaterals. A retinal vessel classifier was developed to differentiate between patients with poor and good pial collaterals and may allow rapid non-invasive identification of patients with poor pial collaterals.</description><subject>Algorithms</subject><subject>Angiography</subject><subject>Biology and Life Sciences</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>Brain Ischemia - diagnostic imaging</subject><subject>Care and treatment</subject><subject>Cerebral Angiography - methods</subject><subject>Cerebral blood flow</subject><subject>Cholesterol</subject><subject>Collateral Circulation - physiology</subject><subject>Computed tomography</subject><subject>Computer and Information Sciences</subject><subject>CT imaging</subject><subject>Evaluation</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Infarction, Middle Cerebral Artery</subject><subject>Ischemia</subject><subject>Ischemic Stroke</subject><subject>Low density lipoprotein</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Occlusion</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Retina</subject><subject>Retinal Vessels - diagnostic imaging</subject><subject>Retrospective Studies</subject><subject>Stroke</subject><subject>Stroke (Disease)</subject><subject>Stroke - diagnostic imaging</subject><subject>Support vector machines</subject><subject>Tomography</subject><subject>Tortuosity</subject><subject>Triglycerides</subject><subject>Veins &amp; arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAYhoso7rr6D0QLguDFjDk1aW6EZfEwsLCwHm5Dmn6dZmybbpKu-u_NON1lCgrSi4b0-d6GJ2-WPcdojanAb3du8oPu1qMbYI0IFyUVD7JTLClZcYLow6P1SfYkhB1CBS05f5yd0KLAuBTyNKuuIdoUk99CCNDl_dRF23htou5CPnqorYn5aBNhXNfpCD4tQ9RxCrkd8lFHC0MM-Q8b21ybKUJug2mhtyZh3n2Hp9mjJoXBs_l9ln398P7LxafV5dXHzcX55cpwSeJKYooqaQoDIEQJSLKmYZUmNTLUYNbUJakYqsoCCia5loIwWvNCMyY4JRXQs-zlIXfsXFCznqAIL5MCKQlPxOZA1E7v1Ohtr_0v5bRVfzac3yrtozUdKExqgTAHihll0oAsYO9OCKhoYRqTst7Nf5uqHmqTJCQzi9Dll8G2autulUQClaVIAa_mAO9uJgjxH0eeqa1Op7JD41KY6ZNidS7SraOiJDJR679Q6an395AK0ti0vxh4sxhITISfcaunENTm8_X_s1ffluzrI7YF3cU2uG6K1g1hCbIDaLwLwUNzbw4jte_3nQ2177ea-53GXhxbvx-6KzT9DXjI9po</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Khan, Adnan</creator><creator>De Boever, Patrick</creator><creator>Gerrits, Nele</creator><creator>Akhtar, Naveed</creator><creator>Saqqur, Maher</creator><creator>Ponirakis, Georgios</creator><creator>Gad, Hoda</creator><creator>Petropoulos, Ioannis N</creator><creator>Shuaib, Ashfaq</creator><creator>Faber, James E</creator><creator>Kamran, Saadat</creator><creator>Malik, Rayaz A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4647-6672</orcidid><orcidid>https://orcid.org/0000-0002-5197-8215</orcidid><orcidid>https://orcid.org/0000-0002-1126-7638</orcidid></search><sort><creationdate>20220505</creationdate><title>Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke</title><author>Khan, Adnan ; De Boever, Patrick ; Gerrits, Nele ; Akhtar, Naveed ; Saqqur, Maher ; Ponirakis, Georgios ; Gad, Hoda ; Petropoulos, Ioannis N ; Shuaib, Ashfaq ; Faber, James E ; Kamran, Saadat ; Malik, Rayaz A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9130b9c5cee778e094ff4ba2d0c3c14fd82b40b85e5496a97243d65a447632be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Angiography</topic><topic>Biology and Life Sciences</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>Brain Ischemia - diagnostic imaging</topic><topic>Care and treatment</topic><topic>Cerebral Angiography - methods</topic><topic>Cerebral blood flow</topic><topic>Cholesterol</topic><topic>Collateral Circulation - physiology</topic><topic>Computed tomography</topic><topic>Computer and Information Sciences</topic><topic>CT imaging</topic><topic>Evaluation</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Infarction, Middle Cerebral Artery</topic><topic>Ischemia</topic><topic>Ischemic Stroke</topic><topic>Low density lipoprotein</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Occlusion</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Retina</topic><topic>Retinal Vessels - diagnostic imaging</topic><topic>Retrospective Studies</topic><topic>Stroke</topic><topic>Stroke (Disease)</topic><topic>Stroke - diagnostic imaging</topic><topic>Support vector machines</topic><topic>Tomography</topic><topic>Tortuosity</topic><topic>Triglycerides</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Adnan</creatorcontrib><creatorcontrib>De Boever, Patrick</creatorcontrib><creatorcontrib>Gerrits, Nele</creatorcontrib><creatorcontrib>Akhtar, Naveed</creatorcontrib><creatorcontrib>Saqqur, Maher</creatorcontrib><creatorcontrib>Ponirakis, Georgios</creatorcontrib><creatorcontrib>Gad, Hoda</creatorcontrib><creatorcontrib>Petropoulos, Ioannis N</creatorcontrib><creatorcontrib>Shuaib, Ashfaq</creatorcontrib><creatorcontrib>Faber, James E</creatorcontrib><creatorcontrib>Kamran, Saadat</creatorcontrib><creatorcontrib>Malik, Rayaz A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Adnan</au><au>De Boever, Patrick</au><au>Gerrits, Nele</au><au>Akhtar, Naveed</au><au>Saqqur, Maher</au><au>Ponirakis, Georgios</au><au>Gad, Hoda</au><au>Petropoulos, Ioannis N</au><au>Shuaib, Ashfaq</au><au>Faber, James E</au><au>Kamran, Saadat</au><au>Malik, Rayaz A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-05-05</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>e0267837</spage><pages>e0267837-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pial collateral blood flow is a major determinant of the outcomes of acute ischemic stroke. This study was undertaken to determine whether retinal vessel metrics can predict the pial collateral status and stroke outcomes in patients. Thirty-five patients with acute stroke secondary to middle cerebral artery (MCA) occlusion underwent grading of their pial collateral status from computed tomography angiography and retinal vessel analysis from retinal fundus images. The NIHSS (14.7 ± 5.5 vs 10.1 ± 5.8, p = 0.026) and mRS (2.9 ± 1.6 vs 1.9 ± 1.3, p = 0.048) scores were higher at admission in patients with poor compared to good pial collaterals. Retinal vessel multifractals: D0 (1.673±0.028vs1.652±0.025, p = 0.028), D1 (1.609±0.027vs1.590±0.025, p = 0.044) and f(α)max (1.674±0.027vs1.652±0.024, p = 0.019) were higher in patients with poor compared to good pial collaterals. Furthermore, support vector machine learning achieved a fair sensitivity (0.743) and specificity (0.707) for differentiating patients with poor from good pial collaterals. Age (p = 0.702), BMI (p = 0.422), total cholesterol (p = 0.842), triglycerides (p = 0.673), LDL (p = 0.952), HDL (p = 0.366), systolic blood pressure (p = 0.727), HbA1c (p = 0.261) and standard retinal metrics including CRAE (p = 0.084), CRVE (p = 0.946), AVR (p = 0.148), tortuosity index (p = 0.790), monofractal Df (p = 0.576), lacunarity (p = 0.531), curve asymmetry (p = 0.679) and singularity length (p = 0.937) did not differ between patients with poor compared to good pial collaterals. This is the first translational study to show increased retinal vessel multifractal dimensions in patients with acute ischemic stroke and poor pial collaterals. A retinal vessel classifier was developed to differentiate between patients with poor and good pial collaterals and may allow rapid non-invasive identification of patients with poor pial collaterals.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35511879</pmid><doi>10.1371/journal.pone.0267837</doi><tpages>e0267837</tpages><orcidid>https://orcid.org/0000-0003-4647-6672</orcidid><orcidid>https://orcid.org/0000-0002-5197-8215</orcidid><orcidid>https://orcid.org/0000-0002-1126-7638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-05, Vol.17 (5), p.e0267837
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2686209926
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Angiography
Biology and Life Sciences
Blood flow
Blood pressure
Blood vessels
Brain Ischemia - diagnostic imaging
Care and treatment
Cerebral Angiography - methods
Cerebral blood flow
Cholesterol
Collateral Circulation - physiology
Computed tomography
Computer and Information Sciences
CT imaging
Evaluation
Fractal geometry
Fractals
High density lipoprotein
Humans
Infarction, Middle Cerebral Artery
Ischemia
Ischemic Stroke
Low density lipoprotein
Machine learning
Medicine and Health Sciences
Occlusion
Physical Sciences
Research and Analysis Methods
Retina
Retinal Vessels - diagnostic imaging
Retrospective Studies
Stroke
Stroke (Disease)
Stroke - diagnostic imaging
Support vector machines
Tomography
Tortuosity
Triglycerides
Veins & arteries
title Retinal vessel multifractals predict pial collateral status in patients with acute ischemic stroke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retinal%20vessel%20multifractals%20predict%20pial%20collateral%20status%20in%20patients%20with%20acute%20ischemic%20stroke&rft.jtitle=PloS%20one&rft.au=Khan,%20Adnan&rft.date=2022-05-05&rft.volume=17&rft.issue=5&rft.spage=e0267837&rft.pages=e0267837-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0267837&rft_dat=%3Cgale_plos_%3EA702605829%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686209926&rft_id=info:pmid/35511879&rft_galeid=A702605829&rft_doaj_id=oai_doaj_org_article_12d7016e314349ce95e386677eb35cfc&rfr_iscdi=true