Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae
The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (E...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2022-05, Vol.18 (5), p.e1010541-e1010541 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010541 |
---|---|
container_issue | 5 |
container_start_page | e1010541 |
container_title | PLoS pathogens |
container_volume | 18 |
creator | Martel, Alexandre Laflamme, Bradley Breit-McNally, Clare Wang, Pauline Lonjon, Fabien Desveaux, Darrell Guttman, David S |
description | The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires. |
doi_str_mv | 10.1371/journal.ppat.1010541 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2677649459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705779497</galeid><doaj_id>oai_doaj_org_article_9e2223f5ea9c47128dcb2c0e36248b7b</doaj_id><sourcerecordid>A705779497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c712t-2cd9757e672716751663eb9a8b2757be678294e097480ed55f4ea11515f702913</originalsourceid><addsrcrecordid>eNqVkluL1DAUx4so7rr6DUQLvuhDx1yb5kVYFi-F9YKX55Cmp50MbTMmqTjf3ozTWXZkXySEhJPf_59zDifLnmK0wlTg1xs3-0kPq-1WxxVGGHGG72XnmHNaCCrY_Vv3s-xRCBuEGKa4fJidUc5FSUh1nq0_QtTQdWCi87mdInhtonVTyEfXzoOOkMd12rst5HVd50e2iN72PXhoczuO82TjLh-cbnPX5V8CzK0b3aRDHnbeTr2Gx9mDTg8BniznRfbj3dvvVx-K68_v66vL68IITGJBTCsFF1AKInApOC5LCo3UVUNSuEnxikgGSApWIWg57xhojDnmnUBEYnqRPT_4bgcX1NKkoEgpRMkk4zIR9YFond6orbej9jvltFV_A873SvtozQBKAiGEdhy0NCzlV7WmIQYBLQmrGtEkrzfLb3MzQmtgil4PJ6anL5Ndq979UilTTmmVDF4uBt79nCFENdpgYBj0BG7e511yjCQiZUJf_IPeXd1C9ToVYKfOpX_N3lRdCsSFkEyKRK3uoNJqYbTGTdDZFD8RvDoRJCbC79jrOQRVf_v6H-ynU5YdWONdCB66m95hpPZzfixS7edcLXOeZM9u9_1GdBxs-gfRmfi_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677649459</pqid></control><display><type>article</type><title>Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Martel, Alexandre ; Laflamme, Bradley ; Breit-McNally, Clare ; Wang, Pauline ; Lonjon, Fabien ; Desveaux, Darrell ; Guttman, David S</creator><contributor>Dinesh-Kumar, Savithramma P.</contributor><creatorcontrib>Martel, Alexandre ; Laflamme, Bradley ; Breit-McNally, Clare ; Wang, Pauline ; Lonjon, Fabien ; Desveaux, Darrell ; Guttman, David S ; Dinesh-Kumar, Savithramma P.</creatorcontrib><description>The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010541</identifier><identifier>PMID: 35576228</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Antibiotics ; Apoptosis ; Arabidopsis ; Arabidopsis Proteins - genetics ; Bacterial Proteins - genetics ; Biology and Life Sciences ; Causes of ; Cell receptors ; Divergence ; Drug resistance ; Genetic aspects ; Genotype ; Host-bacteria relationships ; Humans ; Immunity ; Medicine and Health Sciences ; Mutation ; Pathogenesis ; Pathogens ; Plant diseases ; Plant Diseases - microbiology ; Plant Immunity ; Properties ; Pseudomonas ; Pseudomonas syringae ; Recombination ; Research and Analysis Methods ; Strains (organisms) ; Tomatoes ; Virulence</subject><ispartof>PLoS pathogens, 2022-05, Vol.18 (5), p.e1010541-e1010541</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Martel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Martel et al 2022 Martel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c712t-2cd9757e672716751663eb9a8b2757be678294e097480ed55f4ea11515f702913</citedby><cites>FETCH-LOGICAL-c712t-2cd9757e672716751663eb9a8b2757be678294e097480ed55f4ea11515f702913</cites><orcidid>0000-0003-4270-2791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135338/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135338/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35576228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dinesh-Kumar, Savithramma P.</contributor><creatorcontrib>Martel, Alexandre</creatorcontrib><creatorcontrib>Laflamme, Bradley</creatorcontrib><creatorcontrib>Breit-McNally, Clare</creatorcontrib><creatorcontrib>Wang, Pauline</creatorcontrib><creatorcontrib>Lonjon, Fabien</creatorcontrib><creatorcontrib>Desveaux, Darrell</creatorcontrib><creatorcontrib>Guttman, David S</creatorcontrib><title>Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.</description><subject>Alleles</subject><subject>Antibiotics</subject><subject>Apoptosis</subject><subject>Arabidopsis</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Biology and Life Sciences</subject><subject>Causes of</subject><subject>Cell receptors</subject><subject>Divergence</subject><subject>Drug resistance</subject><subject>Genetic aspects</subject><subject>Genotype</subject><subject>Host-bacteria relationships</subject><subject>Humans</subject><subject>Immunity</subject><subject>Medicine and Health Sciences</subject><subject>Mutation</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Immunity</subject><subject>Properties</subject><subject>Pseudomonas</subject><subject>Pseudomonas syringae</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>Strains (organisms)</subject><subject>Tomatoes</subject><subject>Virulence</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluL1DAUx4so7rr6DUQLvuhDx1yb5kVYFi-F9YKX55Cmp50MbTMmqTjf3ozTWXZkXySEhJPf_59zDifLnmK0wlTg1xs3-0kPq-1WxxVGGHGG72XnmHNaCCrY_Vv3s-xRCBuEGKa4fJidUc5FSUh1nq0_QtTQdWCi87mdInhtonVTyEfXzoOOkMd12rst5HVd50e2iN72PXhoczuO82TjLh-cbnPX5V8CzK0b3aRDHnbeTr2Gx9mDTg8BniznRfbj3dvvVx-K68_v66vL68IITGJBTCsFF1AKInApOC5LCo3UVUNSuEnxikgGSApWIWg57xhojDnmnUBEYnqRPT_4bgcX1NKkoEgpRMkk4zIR9YFond6orbej9jvltFV_A873SvtozQBKAiGEdhy0NCzlV7WmIQYBLQmrGtEkrzfLb3MzQmtgil4PJ6anL5Ndq979UilTTmmVDF4uBt79nCFENdpgYBj0BG7e511yjCQiZUJf_IPeXd1C9ToVYKfOpX_N3lRdCsSFkEyKRK3uoNJqYbTGTdDZFD8RvDoRJCbC79jrOQRVf_v6H-ynU5YdWONdCB66m95hpPZzfixS7edcLXOeZM9u9_1GdBxs-gfRmfi_</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Martel, Alexandre</creator><creator>Laflamme, Bradley</creator><creator>Breit-McNally, Clare</creator><creator>Wang, Pauline</creator><creator>Lonjon, Fabien</creator><creator>Desveaux, Darrell</creator><creator>Guttman, David S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4270-2791</orcidid></search><sort><creationdate>20220501</creationdate><title>Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae</title><author>Martel, Alexandre ; Laflamme, Bradley ; Breit-McNally, Clare ; Wang, Pauline ; Lonjon, Fabien ; Desveaux, Darrell ; Guttman, David S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c712t-2cd9757e672716751663eb9a8b2757be678294e097480ed55f4ea11515f702913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alleles</topic><topic>Antibiotics</topic><topic>Apoptosis</topic><topic>Arabidopsis</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Biology and Life Sciences</topic><topic>Causes of</topic><topic>Cell receptors</topic><topic>Divergence</topic><topic>Drug resistance</topic><topic>Genetic aspects</topic><topic>Genotype</topic><topic>Host-bacteria relationships</topic><topic>Humans</topic><topic>Immunity</topic><topic>Medicine and Health Sciences</topic><topic>Mutation</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Immunity</topic><topic>Properties</topic><topic>Pseudomonas</topic><topic>Pseudomonas syringae</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>Strains (organisms)</topic><topic>Tomatoes</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martel, Alexandre</creatorcontrib><creatorcontrib>Laflamme, Bradley</creatorcontrib><creatorcontrib>Breit-McNally, Clare</creatorcontrib><creatorcontrib>Wang, Pauline</creatorcontrib><creatorcontrib>Lonjon, Fabien</creatorcontrib><creatorcontrib>Desveaux, Darrell</creatorcontrib><creatorcontrib>Guttman, David S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martel, Alexandre</au><au>Laflamme, Bradley</au><au>Breit-McNally, Clare</au><au>Wang, Pauline</au><au>Lonjon, Fabien</au><au>Desveaux, Darrell</au><au>Guttman, David S</au><au>Dinesh-Kumar, Savithramma P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>e1010541</spage><epage>e1010541</epage><pages>e1010541-e1010541</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35576228</pmid><doi>10.1371/journal.ppat.1010541</doi><tpages>e1010541</tpages><orcidid>https://orcid.org/0000-0003-4270-2791</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2022-05, Vol.18 (5), p.e1010541-e1010541 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2677649459 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alleles Antibiotics Apoptosis Arabidopsis Arabidopsis Proteins - genetics Bacterial Proteins - genetics Biology and Life Sciences Causes of Cell receptors Divergence Drug resistance Genetic aspects Genotype Host-bacteria relationships Humans Immunity Medicine and Health Sciences Mutation Pathogenesis Pathogens Plant diseases Plant Diseases - microbiology Plant Immunity Properties Pseudomonas Pseudomonas syringae Recombination Research and Analysis Methods Strains (organisms) Tomatoes Virulence |
title | Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaeffector%20interactions%20modulate%20the%20type%20III%20effector-triggered%20immunity%20load%20of%20Pseudomonas%20syringae&rft.jtitle=PLoS%20pathogens&rft.au=Martel,%20Alexandre&rft.date=2022-05-01&rft.volume=18&rft.issue=5&rft.spage=e1010541&rft.epage=e1010541&rft.pages=e1010541-e1010541&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010541&rft_dat=%3Cgale_plos_%3EA705779497%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677649459&rft_id=info:pmid/35576228&rft_galeid=A705779497&rft_doaj_id=oai_doaj_org_article_9e2223f5ea9c47128dcb2c0e36248b7b&rfr_iscdi=true |