Role of non-specific interactions in the phase-separation and maturation of macromolecules

Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-05, Vol.18 (5), p.e1010067-e1010067
Hauptverfasser: Krishnan, Rakesh, Ranganathan, Srivastav, Maji, Samir K, Padinhateeri, Ranjith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010067
container_issue 5
container_start_page e1010067
container_title PLoS computational biology
container_volume 18
creator Krishnan, Rakesh
Ranganathan, Srivastav
Maji, Samir K
Padinhateeri, Ranjith
description Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.
doi_str_mv 10.1371/journal.pcbi.1010067
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2677644829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705774566</galeid><doaj_id>oai_doaj_org_article_be49d14b454646b2b95c2cabc8df0fba</doaj_id><sourcerecordid>A705774566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-58b5b5de6968c523e3c07d575c6ef801fbf78a0ee37ab1f3a1b317630097d0913</originalsourceid><addsrcrecordid>eNqVUstu1DAUjRCIlsIfIIjEpiwy2PEr2SBVVYGRKpAKbNhYtnM941FiBztB8Pd4mLTqIDbIC9_Huec-dIriOUYrTAR-swtz9KpfjUa7FUYYIS4eFKeYMVIJwpqH9-yT4klKO4Sy2fLHxQnJCVIjclp8uwk9lMGWPvgqjWCcdaZ0foKozOSCT9kppy2U41YlqBKMKqp9olS-Kwc1zYubOQZlYhgyoZl7SE-LR1b1CZ4t_1nx9d3Vl8sP1fWn9-vLi-vKME6mijWaadYBb3ljWE2AGCQ6JpjhYBuErbaiUQiACKWxJQprggUnCLWiQy0mZ8XLA-_YhySXsyRZcyE4pU3dZsT6gOiC2skxukHFXzIoJ_8EQtxIFSdnepAaaNthqimjnHJd65aZ2ihtms4iq1Xmert0m_UAnQE_RdUfkR5nvNvKTfghW4xbXtNMcL4QxPB9hjTJwSUDfa88hHk_N8e0aRqx3-zVX9B_b7c6oDYqL-C8Dbmvya-DwZngwbocvxCICUEZ57ng9VFBxkzwc9qoOSW5_nzzH9iPx1h6wGYVpBTB3l0FI7nX7O34cq9ZuWg2l724f9G7oluRkt_k1el0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677644829</pqid></control><display><type>article</type><title>Role of non-specific interactions in the phase-separation and maturation of macromolecules</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Krishnan, Rakesh ; Ranganathan, Srivastav ; Maji, Samir K ; Padinhateeri, Ranjith</creator><creatorcontrib>Krishnan, Rakesh ; Ranganathan, Srivastav ; Maji, Samir K ; Padinhateeri, Ranjith</creatorcontrib><description>Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010067</identifier><identifier>PMID: 35533203</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Biomolecules ; Cell division ; Chains (polymeric) ; Entropy ; Macromolecules ; Phase separation ; Physical Sciences ; Physiological aspects ; Polymers ; Proteins ; Questions ; Self assembly ; Separation (Technology) ; Simulation</subject><ispartof>PLoS computational biology, 2022-05, Vol.18 (5), p.e1010067-e1010067</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Krishnan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Krishnan et al 2022 Krishnan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-58b5b5de6968c523e3c07d575c6ef801fbf78a0ee37ab1f3a1b317630097d0913</citedby><cites>FETCH-LOGICAL-c563t-58b5b5de6968c523e3c07d575c6ef801fbf78a0ee37ab1f3a1b317630097d0913</cites><orcidid>0000-0003-4364-0959 ; 0000-0003-4075-3931 ; 0000-0002-9110-1565 ; 0000-0001-5485-1474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119624/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119624/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35533203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnan, Rakesh</creatorcontrib><creatorcontrib>Ranganathan, Srivastav</creatorcontrib><creatorcontrib>Maji, Samir K</creatorcontrib><creatorcontrib>Padinhateeri, Ranjith</creatorcontrib><title>Role of non-specific interactions in the phase-separation and maturation of macromolecules</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.</description><subject>Biology and Life Sciences</subject><subject>Biomolecules</subject><subject>Cell division</subject><subject>Chains (polymeric)</subject><subject>Entropy</subject><subject>Macromolecules</subject><subject>Phase separation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Questions</subject><subject>Self assembly</subject><subject>Separation (Technology)</subject><subject>Simulation</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVUstu1DAUjRCIlsIfIIjEpiwy2PEr2SBVVYGRKpAKbNhYtnM941FiBztB8Pd4mLTqIDbIC9_Huec-dIriOUYrTAR-swtz9KpfjUa7FUYYIS4eFKeYMVIJwpqH9-yT4klKO4Sy2fLHxQnJCVIjclp8uwk9lMGWPvgqjWCcdaZ0foKozOSCT9kppy2U41YlqBKMKqp9olS-Kwc1zYubOQZlYhgyoZl7SE-LR1b1CZ4t_1nx9d3Vl8sP1fWn9-vLi-vKME6mijWaadYBb3ljWE2AGCQ6JpjhYBuErbaiUQiACKWxJQprggUnCLWiQy0mZ8XLA-_YhySXsyRZcyE4pU3dZsT6gOiC2skxukHFXzIoJ_8EQtxIFSdnepAaaNthqimjnHJd65aZ2ihtms4iq1Xmert0m_UAnQE_RdUfkR5nvNvKTfghW4xbXtNMcL4QxPB9hjTJwSUDfa88hHk_N8e0aRqx3-zVX9B_b7c6oDYqL-C8Dbmvya-DwZngwbocvxCICUEZ57ng9VFBxkzwc9qoOSW5_nzzH9iPx1h6wGYVpBTB3l0FI7nX7O34cq9ZuWg2l724f9G7oluRkt_k1el0</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Krishnan, Rakesh</creator><creator>Ranganathan, Srivastav</creator><creator>Maji, Samir K</creator><creator>Padinhateeri, Ranjith</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4364-0959</orcidid><orcidid>https://orcid.org/0000-0003-4075-3931</orcidid><orcidid>https://orcid.org/0000-0002-9110-1565</orcidid><orcidid>https://orcid.org/0000-0001-5485-1474</orcidid></search><sort><creationdate>20220501</creationdate><title>Role of non-specific interactions in the phase-separation and maturation of macromolecules</title><author>Krishnan, Rakesh ; Ranganathan, Srivastav ; Maji, Samir K ; Padinhateeri, Ranjith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-58b5b5de6968c523e3c07d575c6ef801fbf78a0ee37ab1f3a1b317630097d0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biology and Life Sciences</topic><topic>Biomolecules</topic><topic>Cell division</topic><topic>Chains (polymeric)</topic><topic>Entropy</topic><topic>Macromolecules</topic><topic>Phase separation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Questions</topic><topic>Self assembly</topic><topic>Separation (Technology)</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Rakesh</creatorcontrib><creatorcontrib>Ranganathan, Srivastav</creatorcontrib><creatorcontrib>Maji, Samir K</creatorcontrib><creatorcontrib>Padinhateeri, Ranjith</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Rakesh</au><au>Ranganathan, Srivastav</au><au>Maji, Samir K</au><au>Padinhateeri, Ranjith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of non-specific interactions in the phase-separation and maturation of macromolecules</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>e1010067</spage><epage>e1010067</epage><pages>e1010067-e1010067</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35533203</pmid><doi>10.1371/journal.pcbi.1010067</doi><orcidid>https://orcid.org/0000-0003-4364-0959</orcidid><orcidid>https://orcid.org/0000-0003-4075-3931</orcidid><orcidid>https://orcid.org/0000-0002-9110-1565</orcidid><orcidid>https://orcid.org/0000-0001-5485-1474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-05, Vol.18 (5), p.e1010067-e1010067
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2677644829
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Biology and Life Sciences
Biomolecules
Cell division
Chains (polymeric)
Entropy
Macromolecules
Phase separation
Physical Sciences
Physiological aspects
Polymers
Proteins
Questions
Self assembly
Separation (Technology)
Simulation
title Role of non-specific interactions in the phase-separation and maturation of macromolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20non-specific%20interactions%20in%20the%20phase-separation%20and%20maturation%20of%20macromolecules&rft.jtitle=PLoS%20computational%20biology&rft.au=Krishnan,%20Rakesh&rft.date=2022-05-01&rft.volume=18&rft.issue=5&rft.spage=e1010067&rft.epage=e1010067&rft.pages=e1010067-e1010067&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010067&rft_dat=%3Cgale_plos_%3EA705774566%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677644829&rft_id=info:pmid/35533203&rft_galeid=A705774566&rft_doaj_id=oai_doaj_org_article_be49d14b454646b2b95c2cabc8df0fba&rfr_iscdi=true