Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera
Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicol...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2022-05, Vol.18 (5), p.e1010195-e1010195 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010195 |
---|---|
container_issue | 5 |
container_start_page | e1010195 |
container_title | PLoS genetics |
container_volume | 18 |
creator | Smith, Thomas E Li, Yiyuan Perreau, Julie Moran, Nancy A |
description | Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses. |
doi_str_mv | 10.1371/journal.pgen.1010195 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2677632173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705775712</galeid><doaj_id>oai_doaj_org_article_ab0b17483dd64de0bf019b09ce62fc6e</doaj_id><sourcerecordid>A705775712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</originalsourceid><addsrcrecordid>eNqVk1uL1DAUgIso7rr6D0QLgujDjLm0TfsirMuqA4sL3l7DaS5thrTpNu3i_BF_r-lOd5nKPiiBtqTf-U6SkxNFzzFaY8rwu60b-xbsuqtUu8YojCJ9EB3jNKUrlqDk4cH3UfTE-y1CNM0L9jg6omlKCMP5cfT73I7CSBiMa2On49r5IYZWxn7XlGFuiEV49KYcJ8LHg4s71Q1GusruBLRxowYonTW-iUvwSsbBI1zTQR-c1yoOq3ONEX6SK1PVwd7VJvjHUkNjrFH-Jt9QK9PHH0ZRt6qHp9EjDdarZ_P7JPrx8fz72efVxeWnzdnpxUowkg2rBEqSgNQISpwQTPNcACsokakkrJA6T5nOAJDGGWVII1owUgikCUFFgSSiJ9HLvbezzvP5SD0nGWMZJZjRQGz2hHSw5V1vGuh33IHhNxOurzj0gxFWcShRiVmSUymzRCpU6lCTEhVCZUSLTAXX-znbWDZKChVOFuxCuvzTmppX7poXGGcZS4LgzSzo3dWo_MAb44WyFlrlxmndGUYsywkJ6Ku_0Pt3N1MVhA2YVruQV0xSfspQyljK8ORa30OFIVUorWuVNmF-EfB2ETDdIfVrqGD0nm--ff0P9su_s5c_l-zrA7ZWYIfaO7u_x0sw2YOid973St8VBCM-tdrtyfGp1fjcaiHsxWEx74Jue4v-AZZNJcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677632173</pqid></control><display><type>article</type><title>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Smith, Thomas E ; Li, Yiyuan ; Perreau, Julie ; Moran, Nancy A</creator><creatorcontrib>Smith, Thomas E ; Li, Yiyuan ; Perreau, Julie ; Moran, Nancy A</creatorcontrib><description>Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010195</identifier><identifier>PMID: 35522718</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyrthosiphon pisum ; Adaptation ; Adaptations ; Amino acids ; Animals ; Aphididae ; Aphids - genetics ; Aphids - microbiology ; Bacteria ; Biology and Life Sciences ; Biosynthesis ; Buchnera ; Buchnera - genetics ; Buchnera - metabolism ; Cell division ; Cell walls ; D-Alanine ; Enzymes ; Evolution ; Evolutionary genetics ; Genes ; Genes, Bacterial ; Genetic aspects ; Genomes ; Genomics ; Host-bacteria relationships ; Insects ; Lipids ; Macrosiphini ; Metabolism ; Peptidoglycan - genetics ; Peptidoglycan - metabolism ; Peptidoglycans ; Phylogenetics ; Phylogeny ; Physiological aspects ; Proteobacteria ; Symbiosis ; Symbiosis - genetics</subject><ispartof>PLoS genetics, 2022-05, Vol.18 (5), p.e1010195-e1010195</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Smith et al 2022 Smith et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</citedby><cites>FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</cites><orcidid>0000-0002-4031-7753 ; 0000-0002-5428-7014 ; 0000-0003-1426-0033 ; 0000-0003-2983-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35522718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Thomas E</creatorcontrib><creatorcontrib>Li, Yiyuan</creatorcontrib><creatorcontrib>Perreau, Julie</creatorcontrib><creatorcontrib>Moran, Nancy A</creatorcontrib><title>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.</description><subject>Acyrthosiphon pisum</subject><subject>Adaptation</subject><subject>Adaptations</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Aphididae</subject><subject>Aphids - genetics</subject><subject>Aphids - microbiology</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Buchnera</subject><subject>Buchnera - genetics</subject><subject>Buchnera - metabolism</subject><subject>Cell division</subject><subject>Cell walls</subject><subject>D-Alanine</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Host-bacteria relationships</subject><subject>Insects</subject><subject>Lipids</subject><subject>Macrosiphini</subject><subject>Metabolism</subject><subject>Peptidoglycan - genetics</subject><subject>Peptidoglycan - metabolism</subject><subject>Peptidoglycans</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Proteobacteria</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUgIso7rr6D0QLgujDjLm0TfsirMuqA4sL3l7DaS5thrTpNu3i_BF_r-lOd5nKPiiBtqTf-U6SkxNFzzFaY8rwu60b-xbsuqtUu8YojCJ9EB3jNKUrlqDk4cH3UfTE-y1CNM0L9jg6omlKCMP5cfT73I7CSBiMa2On49r5IYZWxn7XlGFuiEV49KYcJ8LHg4s71Q1GusruBLRxowYonTW-iUvwSsbBI1zTQR-c1yoOq3ONEX6SK1PVwd7VJvjHUkNjrFH-Jt9QK9PHH0ZRt6qHp9EjDdarZ_P7JPrx8fz72efVxeWnzdnpxUowkg2rBEqSgNQISpwQTPNcACsokakkrJA6T5nOAJDGGWVII1owUgikCUFFgSSiJ9HLvbezzvP5SD0nGWMZJZjRQGz2hHSw5V1vGuh33IHhNxOurzj0gxFWcShRiVmSUymzRCpU6lCTEhVCZUSLTAXX-znbWDZKChVOFuxCuvzTmppX7poXGGcZS4LgzSzo3dWo_MAb44WyFlrlxmndGUYsywkJ6Ku_0Pt3N1MVhA2YVruQV0xSfspQyljK8ORa30OFIVUorWuVNmF-EfB2ETDdIfVrqGD0nm--ff0P9su_s5c_l-zrA7ZWYIfaO7u_x0sw2YOid973St8VBCM-tdrtyfGp1fjcaiHsxWEx74Jue4v-AZZNJcA</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>Smith, Thomas E</creator><creator>Li, Yiyuan</creator><creator>Perreau, Julie</creator><creator>Moran, Nancy A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4031-7753</orcidid><orcidid>https://orcid.org/0000-0002-5428-7014</orcidid><orcidid>https://orcid.org/0000-0003-1426-0033</orcidid><orcidid>https://orcid.org/0000-0003-2983-9769</orcidid></search><sort><creationdate>20220506</creationdate><title>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</title><author>Smith, Thomas E ; Li, Yiyuan ; Perreau, Julie ; Moran, Nancy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acyrthosiphon pisum</topic><topic>Adaptation</topic><topic>Adaptations</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Aphididae</topic><topic>Aphids - genetics</topic><topic>Aphids - microbiology</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Buchnera</topic><topic>Buchnera - genetics</topic><topic>Buchnera - metabolism</topic><topic>Cell division</topic><topic>Cell walls</topic><topic>D-Alanine</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Host-bacteria relationships</topic><topic>Insects</topic><topic>Lipids</topic><topic>Macrosiphini</topic><topic>Metabolism</topic><topic>Peptidoglycan - genetics</topic><topic>Peptidoglycan - metabolism</topic><topic>Peptidoglycans</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Proteobacteria</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Thomas E</creatorcontrib><creatorcontrib>Li, Yiyuan</creatorcontrib><creatorcontrib>Perreau, Julie</creatorcontrib><creatorcontrib>Moran, Nancy A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Thomas E</au><au>Li, Yiyuan</au><au>Perreau, Julie</au><au>Moran, Nancy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-05-06</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>e1010195</spage><epage>e1010195</epage><pages>e1010195-e1010195</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35522718</pmid><doi>10.1371/journal.pgen.1010195</doi><tpages>e1010195</tpages><orcidid>https://orcid.org/0000-0002-4031-7753</orcidid><orcidid>https://orcid.org/0000-0002-5428-7014</orcidid><orcidid>https://orcid.org/0000-0003-1426-0033</orcidid><orcidid>https://orcid.org/0000-0003-2983-9769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2022-05, Vol.18 (5), p.e1010195-e1010195 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2677632173 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acyrthosiphon pisum Adaptation Adaptations Amino acids Animals Aphididae Aphids - genetics Aphids - microbiology Bacteria Biology and Life Sciences Biosynthesis Buchnera Buchnera - genetics Buchnera - metabolism Cell division Cell walls D-Alanine Enzymes Evolution Evolutionary genetics Genes Genes, Bacterial Genetic aspects Genomes Genomics Host-bacteria relationships Insects Lipids Macrosiphini Metabolism Peptidoglycan - genetics Peptidoglycan - metabolism Peptidoglycans Phylogenetics Phylogeny Physiological aspects Proteobacteria Symbiosis Symbiosis - genetics |
title | Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20host%20and%20symbiont%20contributions%20to%20peptidoglycan%20metabolism%20based%20on%20comparative%20genomics%20of%20eight%20aphid%20subfamilies%20and%20their%20Buchnera&rft.jtitle=PLoS%20genetics&rft.au=Smith,%20Thomas%20E&rft.date=2022-05-06&rft.volume=18&rft.issue=5&rft.spage=e1010195&rft.epage=e1010195&rft.pages=e1010195-e1010195&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010195&rft_dat=%3Cgale_plos_%3EA705775712%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677632173&rft_id=info:pmid/35522718&rft_galeid=A705775712&rft_doaj_id=oai_doaj_org_article_ab0b17483dd64de0bf019b09ce62fc6e&rfr_iscdi=true |