Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera

Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2022-05, Vol.18 (5), p.e1010195-e1010195
Hauptverfasser: Smith, Thomas E, Li, Yiyuan, Perreau, Julie, Moran, Nancy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010195
container_issue 5
container_start_page e1010195
container_title PLoS genetics
container_volume 18
creator Smith, Thomas E
Li, Yiyuan
Perreau, Julie
Moran, Nancy A
description Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.
doi_str_mv 10.1371/journal.pgen.1010195
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2677632173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705775712</galeid><doaj_id>oai_doaj_org_article_ab0b17483dd64de0bf019b09ce62fc6e</doaj_id><sourcerecordid>A705775712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</originalsourceid><addsrcrecordid>eNqVk1uL1DAUgIso7rr6D0QLgujDjLm0TfsirMuqA4sL3l7DaS5thrTpNu3i_BF_r-lOd5nKPiiBtqTf-U6SkxNFzzFaY8rwu60b-xbsuqtUu8YojCJ9EB3jNKUrlqDk4cH3UfTE-y1CNM0L9jg6omlKCMP5cfT73I7CSBiMa2On49r5IYZWxn7XlGFuiEV49KYcJ8LHg4s71Q1GusruBLRxowYonTW-iUvwSsbBI1zTQR-c1yoOq3ONEX6SK1PVwd7VJvjHUkNjrFH-Jt9QK9PHH0ZRt6qHp9EjDdarZ_P7JPrx8fz72efVxeWnzdnpxUowkg2rBEqSgNQISpwQTPNcACsokakkrJA6T5nOAJDGGWVII1owUgikCUFFgSSiJ9HLvbezzvP5SD0nGWMZJZjRQGz2hHSw5V1vGuh33IHhNxOurzj0gxFWcShRiVmSUymzRCpU6lCTEhVCZUSLTAXX-znbWDZKChVOFuxCuvzTmppX7poXGGcZS4LgzSzo3dWo_MAb44WyFlrlxmndGUYsywkJ6Ku_0Pt3N1MVhA2YVruQV0xSfspQyljK8ORa30OFIVUorWuVNmF-EfB2ETDdIfVrqGD0nm--ff0P9su_s5c_l-zrA7ZWYIfaO7u_x0sw2YOid973St8VBCM-tdrtyfGp1fjcaiHsxWEx74Jue4v-AZZNJcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677632173</pqid></control><display><type>article</type><title>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Smith, Thomas E ; Li, Yiyuan ; Perreau, Julie ; Moran, Nancy A</creator><creatorcontrib>Smith, Thomas E ; Li, Yiyuan ; Perreau, Julie ; Moran, Nancy A</creatorcontrib><description>Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010195</identifier><identifier>PMID: 35522718</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyrthosiphon pisum ; Adaptation ; Adaptations ; Amino acids ; Animals ; Aphididae ; Aphids - genetics ; Aphids - microbiology ; Bacteria ; Biology and Life Sciences ; Biosynthesis ; Buchnera ; Buchnera - genetics ; Buchnera - metabolism ; Cell division ; Cell walls ; D-Alanine ; Enzymes ; Evolution ; Evolutionary genetics ; Genes ; Genes, Bacterial ; Genetic aspects ; Genomes ; Genomics ; Host-bacteria relationships ; Insects ; Lipids ; Macrosiphini ; Metabolism ; Peptidoglycan - genetics ; Peptidoglycan - metabolism ; Peptidoglycans ; Phylogenetics ; Phylogeny ; Physiological aspects ; Proteobacteria ; Symbiosis ; Symbiosis - genetics</subject><ispartof>PLoS genetics, 2022-05, Vol.18 (5), p.e1010195-e1010195</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Smith et al 2022 Smith et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</citedby><cites>FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</cites><orcidid>0000-0002-4031-7753 ; 0000-0002-5428-7014 ; 0000-0003-1426-0033 ; 0000-0003-2983-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35522718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Thomas E</creatorcontrib><creatorcontrib>Li, Yiyuan</creatorcontrib><creatorcontrib>Perreau, Julie</creatorcontrib><creatorcontrib>Moran, Nancy A</creatorcontrib><title>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.</description><subject>Acyrthosiphon pisum</subject><subject>Adaptation</subject><subject>Adaptations</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Aphididae</subject><subject>Aphids - genetics</subject><subject>Aphids - microbiology</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Buchnera</subject><subject>Buchnera - genetics</subject><subject>Buchnera - metabolism</subject><subject>Cell division</subject><subject>Cell walls</subject><subject>D-Alanine</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Host-bacteria relationships</subject><subject>Insects</subject><subject>Lipids</subject><subject>Macrosiphini</subject><subject>Metabolism</subject><subject>Peptidoglycan - genetics</subject><subject>Peptidoglycan - metabolism</subject><subject>Peptidoglycans</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Proteobacteria</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUgIso7rr6D0QLgujDjLm0TfsirMuqA4sL3l7DaS5thrTpNu3i_BF_r-lOd5nKPiiBtqTf-U6SkxNFzzFaY8rwu60b-xbsuqtUu8YojCJ9EB3jNKUrlqDk4cH3UfTE-y1CNM0L9jg6omlKCMP5cfT73I7CSBiMa2On49r5IYZWxn7XlGFuiEV49KYcJ8LHg4s71Q1GusruBLRxowYonTW-iUvwSsbBI1zTQR-c1yoOq3ONEX6SK1PVwd7VJvjHUkNjrFH-Jt9QK9PHH0ZRt6qHp9EjDdarZ_P7JPrx8fz72efVxeWnzdnpxUowkg2rBEqSgNQISpwQTPNcACsokakkrJA6T5nOAJDGGWVII1owUgikCUFFgSSiJ9HLvbezzvP5SD0nGWMZJZjRQGz2hHSw5V1vGuh33IHhNxOurzj0gxFWcShRiVmSUymzRCpU6lCTEhVCZUSLTAXX-znbWDZKChVOFuxCuvzTmppX7poXGGcZS4LgzSzo3dWo_MAb44WyFlrlxmndGUYsywkJ6Ku_0Pt3N1MVhA2YVruQV0xSfspQyljK8ORa30OFIVUorWuVNmF-EfB2ETDdIfVrqGD0nm--ff0P9su_s5c_l-zrA7ZWYIfaO7u_x0sw2YOid973St8VBCM-tdrtyfGp1fjcaiHsxWEx74Jue4v-AZZNJcA</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>Smith, Thomas E</creator><creator>Li, Yiyuan</creator><creator>Perreau, Julie</creator><creator>Moran, Nancy A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4031-7753</orcidid><orcidid>https://orcid.org/0000-0002-5428-7014</orcidid><orcidid>https://orcid.org/0000-0003-1426-0033</orcidid><orcidid>https://orcid.org/0000-0003-2983-9769</orcidid></search><sort><creationdate>20220506</creationdate><title>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</title><author>Smith, Thomas E ; Li, Yiyuan ; Perreau, Julie ; Moran, Nancy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-4ab24adf0ab1421388ca7932d5d279df857f6aa0f16370f039729c0f220990d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acyrthosiphon pisum</topic><topic>Adaptation</topic><topic>Adaptations</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Aphididae</topic><topic>Aphids - genetics</topic><topic>Aphids - microbiology</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Buchnera</topic><topic>Buchnera - genetics</topic><topic>Buchnera - metabolism</topic><topic>Cell division</topic><topic>Cell walls</topic><topic>D-Alanine</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Host-bacteria relationships</topic><topic>Insects</topic><topic>Lipids</topic><topic>Macrosiphini</topic><topic>Metabolism</topic><topic>Peptidoglycan - genetics</topic><topic>Peptidoglycan - metabolism</topic><topic>Peptidoglycans</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Proteobacteria</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Thomas E</creatorcontrib><creatorcontrib>Li, Yiyuan</creatorcontrib><creatorcontrib>Perreau, Julie</creatorcontrib><creatorcontrib>Moran, Nancy A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Thomas E</au><au>Li, Yiyuan</au><au>Perreau, Julie</au><au>Moran, Nancy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-05-06</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>e1010195</spage><epage>e1010195</epage><pages>e1010195-e1010195</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35522718</pmid><doi>10.1371/journal.pgen.1010195</doi><tpages>e1010195</tpages><orcidid>https://orcid.org/0000-0002-4031-7753</orcidid><orcidid>https://orcid.org/0000-0002-5428-7014</orcidid><orcidid>https://orcid.org/0000-0003-1426-0033</orcidid><orcidid>https://orcid.org/0000-0003-2983-9769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2022-05, Vol.18 (5), p.e1010195-e1010195
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2677632173
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acyrthosiphon pisum
Adaptation
Adaptations
Amino acids
Animals
Aphididae
Aphids - genetics
Aphids - microbiology
Bacteria
Biology and Life Sciences
Biosynthesis
Buchnera
Buchnera - genetics
Buchnera - metabolism
Cell division
Cell walls
D-Alanine
Enzymes
Evolution
Evolutionary genetics
Genes
Genes, Bacterial
Genetic aspects
Genomes
Genomics
Host-bacteria relationships
Insects
Lipids
Macrosiphini
Metabolism
Peptidoglycan - genetics
Peptidoglycan - metabolism
Peptidoglycans
Phylogenetics
Phylogeny
Physiological aspects
Proteobacteria
Symbiosis
Symbiosis - genetics
title Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20host%20and%20symbiont%20contributions%20to%20peptidoglycan%20metabolism%20based%20on%20comparative%20genomics%20of%20eight%20aphid%20subfamilies%20and%20their%20Buchnera&rft.jtitle=PLoS%20genetics&rft.au=Smith,%20Thomas%20E&rft.date=2022-05-06&rft.volume=18&rft.issue=5&rft.spage=e1010195&rft.epage=e1010195&rft.pages=e1010195-e1010195&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010195&rft_dat=%3Cgale_plos_%3EA705775712%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677632173&rft_id=info:pmid/35522718&rft_galeid=A705775712&rft_doaj_id=oai_doaj_org_article_ab0b17483dd64de0bf019b09ce62fc6e&rfr_iscdi=true