Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs

Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-04, Vol.18 (4), p.e1010029-e1010029
Hauptverfasser: Periwal, Vinita, Bassler, Stefan, Andrejev, Sergej, Gabrielli, Natalia, Patil, Kaustubh Raosaheb, Typas, Athanasios, Patil, Kiran Raosaheb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010029
container_issue 4
container_start_page e1010029
container_title PLoS computational biology
container_volume 18
creator Periwal, Vinita
Bassler, Stefan
Andrejev, Sergej
Gabrielli, Natalia
Patil, Kaustubh Raosaheb
Typas, Athanasios
Patil, Kiran Raosaheb
description Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair's activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.
doi_str_mv 10.1371/journal.pcbi.1010029
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2665140137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702007970</galeid><doaj_id>oai_doaj_org_article_a12aeb8b9e0344608538881c2a542b29</doaj_id><sourcerecordid>A702007970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-43462d0ae07000ec8a6b6a34a764fdfba1339d32eb1f47a13b5c8d44a2599b453</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBY4gKHXez4I8kFqVR8rFSBxMfZmjiT1KvEXmyn0H-Pt7utuqgX5IPt8TPveF5NUTxndMl4xd6u_RwcjMuNae2SUUZp2TwojpmUfFFxWT-8cz4qnsS4pjQfG_W4OOJSqJqV6rhI760Hk-ylTVcEYsQYJ3SJ-J44SHOAkRg_bfzsukjmaN1AJjAX1iEZEYK7DvgOx0hSgBzuiHckQRgwkWgnO0LYSreYfiM60oV5iE-LRz2MEZ_t95Pi58cPP84-L86_flqdnZ4vjFIsLQQXquwoIK0opWhqUK0CLqBSou_6FhjnTcdLbFkvqnxrpak7IaCUTdMKyU-Klzvdzeij3hsWdamUZIJmFzOx2hGdh7XeBDtBuNIerL4O-DBoCMmaETWwErCt2wYpF0LRWvK6rpkpQYqyLZus9W5fbW4n7Ey2Mdt3IHr44uyFHvylbmjFGFdZ4PVeIPhfM8akJxsNjiM49PP231LKXLiuM_rqH_T-7vbUALkB63qf65qtqD6taElp1VQ0U8t7qLw6nKzxDnub4wcJbw4SMpPwTxpgjlGvvn_7D_bLISt2rAk-xoD9rXeM6u3M3zSptzOv9zOf017c9f026WbI-V9TzP3l</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665140137</pqid></control><display><type>article</type><title>Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Periwal, Vinita ; Bassler, Stefan ; Andrejev, Sergej ; Gabrielli, Natalia ; Patil, Kaustubh Raosaheb ; Typas, Athanasios ; Patil, Kiran Raosaheb</creator><contributor>Maranas, Costas D.</contributor><creatorcontrib>Periwal, Vinita ; Bassler, Stefan ; Andrejev, Sergej ; Gabrielli, Natalia ; Patil, Kaustubh Raosaheb ; Typas, Athanasios ; Patil, Kiran Raosaheb ; Maranas, Costas D.</creatorcontrib><description>Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair's activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010029</identifier><identifier>PMID: 35468126</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological activity ; Biological products ; Biology and Life Sciences ; Chemical fingerprinting ; Chemical properties ; Computer and Information Sciences ; Computer applications ; Correlation coefficient ; Correlation coefficients ; Cyclooxygenase-1 ; Datasets ; Drugs ; Evaluation ; Learning algorithms ; Machine Learning ; Medicine and Health Sciences ; Nervous system ; Physical Sciences ; Physicochemical properties ; Protein Binding ; Proteins ; Similarity measures ; Spices ; Tea ; Variables</subject><ispartof>PLoS computational biology, 2022-04, Vol.18 (4), p.e1010029-e1010029</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Periwal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Periwal et al 2022 Periwal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-43462d0ae07000ec8a6b6a34a764fdfba1339d32eb1f47a13b5c8d44a2599b453</citedby><cites>FETCH-LOGICAL-c661t-43462d0ae07000ec8a6b6a34a764fdfba1339d32eb1f47a13b5c8d44a2599b453</cites><orcidid>0000-0002-7875-0261 ; 0000-0001-5222-3925 ; 0000-0002-3583-0413 ; 0000-0002-0652-9242 ; 0000-0002-6166-8640 ; 0000-0002-0797-9018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071136/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071136/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35468126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maranas, Costas D.</contributor><creatorcontrib>Periwal, Vinita</creatorcontrib><creatorcontrib>Bassler, Stefan</creatorcontrib><creatorcontrib>Andrejev, Sergej</creatorcontrib><creatorcontrib>Gabrielli, Natalia</creatorcontrib><creatorcontrib>Patil, Kaustubh Raosaheb</creatorcontrib><creatorcontrib>Typas, Athanasios</creatorcontrib><creatorcontrib>Patil, Kiran Raosaheb</creatorcontrib><title>Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair's activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.</description><subject>Biological activity</subject><subject>Biological products</subject><subject>Biology and Life Sciences</subject><subject>Chemical fingerprinting</subject><subject>Chemical properties</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cyclooxygenase-1</subject><subject>Datasets</subject><subject>Drugs</subject><subject>Evaluation</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine and Health Sciences</subject><subject>Nervous system</subject><subject>Physical Sciences</subject><subject>Physicochemical properties</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Similarity measures</subject><subject>Spices</subject><subject>Tea</subject><subject>Variables</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBY4gKHXez4I8kFqVR8rFSBxMfZmjiT1KvEXmyn0H-Pt7utuqgX5IPt8TPveF5NUTxndMl4xd6u_RwcjMuNae2SUUZp2TwojpmUfFFxWT-8cz4qnsS4pjQfG_W4OOJSqJqV6rhI760Hk-ylTVcEYsQYJ3SJ-J44SHOAkRg_bfzsukjmaN1AJjAX1iEZEYK7DvgOx0hSgBzuiHckQRgwkWgnO0LYSreYfiM60oV5iE-LRz2MEZ_t95Pi58cPP84-L86_flqdnZ4vjFIsLQQXquwoIK0opWhqUK0CLqBSou_6FhjnTcdLbFkvqnxrpak7IaCUTdMKyU-Klzvdzeij3hsWdamUZIJmFzOx2hGdh7XeBDtBuNIerL4O-DBoCMmaETWwErCt2wYpF0LRWvK6rpkpQYqyLZus9W5fbW4n7Ey2Mdt3IHr44uyFHvylbmjFGFdZ4PVeIPhfM8akJxsNjiM49PP231LKXLiuM_rqH_T-7vbUALkB63qf65qtqD6taElp1VQ0U8t7qLw6nKzxDnub4wcJbw4SMpPwTxpgjlGvvn_7D_bLISt2rAk-xoD9rXeM6u3M3zSptzOv9zOf017c9f026WbI-V9TzP3l</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Periwal, Vinita</creator><creator>Bassler, Stefan</creator><creator>Andrejev, Sergej</creator><creator>Gabrielli, Natalia</creator><creator>Patil, Kaustubh Raosaheb</creator><creator>Typas, Athanasios</creator><creator>Patil, Kiran Raosaheb</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7875-0261</orcidid><orcidid>https://orcid.org/0000-0001-5222-3925</orcidid><orcidid>https://orcid.org/0000-0002-3583-0413</orcidid><orcidid>https://orcid.org/0000-0002-0652-9242</orcidid><orcidid>https://orcid.org/0000-0002-6166-8640</orcidid><orcidid>https://orcid.org/0000-0002-0797-9018</orcidid></search><sort><creationdate>20220401</creationdate><title>Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs</title><author>Periwal, Vinita ; Bassler, Stefan ; Andrejev, Sergej ; Gabrielli, Natalia ; Patil, Kaustubh Raosaheb ; Typas, Athanasios ; Patil, Kiran Raosaheb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-43462d0ae07000ec8a6b6a34a764fdfba1339d32eb1f47a13b5c8d44a2599b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological activity</topic><topic>Biological products</topic><topic>Biology and Life Sciences</topic><topic>Chemical fingerprinting</topic><topic>Chemical properties</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cyclooxygenase-1</topic><topic>Datasets</topic><topic>Drugs</topic><topic>Evaluation</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine and Health Sciences</topic><topic>Nervous system</topic><topic>Physical Sciences</topic><topic>Physicochemical properties</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Similarity measures</topic><topic>Spices</topic><topic>Tea</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Periwal, Vinita</creatorcontrib><creatorcontrib>Bassler, Stefan</creatorcontrib><creatorcontrib>Andrejev, Sergej</creatorcontrib><creatorcontrib>Gabrielli, Natalia</creatorcontrib><creatorcontrib>Patil, Kaustubh Raosaheb</creatorcontrib><creatorcontrib>Typas, Athanasios</creatorcontrib><creatorcontrib>Patil, Kiran Raosaheb</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Periwal, Vinita</au><au>Bassler, Stefan</au><au>Andrejev, Sergej</au><au>Gabrielli, Natalia</au><au>Patil, Kaustubh Raosaheb</au><au>Typas, Athanasios</au><au>Patil, Kiran Raosaheb</au><au>Maranas, Costas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>4</issue><spage>e1010029</spage><epage>e1010029</epage><pages>e1010029-e1010029</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Natural compounds constitute a rich resource of potential small molecule therapeutics. While experimental access to this resource is limited due to its vast diversity and difficulties in systematic purification, computational assessment of structural similarity with known therapeutic molecules offers a scalable approach. Here, we assessed functional similarity between natural compounds and approved drugs by combining multiple chemical similarity metrics and physicochemical properties using a machine-learning approach. We computed pairwise similarities between 1410 drugs for training classification models and used the drugs shared protein targets as class labels. The best performing models were random forest which gave an average area under the ROC of 0.9, Matthews correlation coefficient of 0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well. The models were then used to predict protein targets of circa 11k natural compounds by comparing them with the drugs. This revealed therapeutic potential of several natural compounds, including those with support from previously published sources as well as those hitherto unexplored. We experimentally validated one of the predicted pair's activities, viz., Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest similarity score when considering most weighted similarity metric but not picked by our models, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach combining multiple chemical features for uncovering protein binding potential of natural compounds.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35468126</pmid><doi>10.1371/journal.pcbi.1010029</doi><orcidid>https://orcid.org/0000-0002-7875-0261</orcidid><orcidid>https://orcid.org/0000-0001-5222-3925</orcidid><orcidid>https://orcid.org/0000-0002-3583-0413</orcidid><orcidid>https://orcid.org/0000-0002-0652-9242</orcidid><orcidid>https://orcid.org/0000-0002-6166-8640</orcidid><orcidid>https://orcid.org/0000-0002-0797-9018</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-04, Vol.18 (4), p.e1010029-e1010029
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2665140137
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Biological activity
Biological products
Biology and Life Sciences
Chemical fingerprinting
Chemical properties
Computer and Information Sciences
Computer applications
Correlation coefficient
Correlation coefficients
Cyclooxygenase-1
Datasets
Drugs
Evaluation
Learning algorithms
Machine Learning
Medicine and Health Sciences
Nervous system
Physical Sciences
Physicochemical properties
Protein Binding
Proteins
Similarity measures
Spices
Tea
Variables
title Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactivity%20assessment%20of%20natural%20compounds%20using%20machine%20learning%20models%20trained%20on%20target%20similarity%20between%20drugs&rft.jtitle=PLoS%20computational%20biology&rft.au=Periwal,%20Vinita&rft.date=2022-04-01&rft.volume=18&rft.issue=4&rft.spage=e1010029&rft.epage=e1010029&rft.pages=e1010029-e1010029&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010029&rft_dat=%3Cgale_plos_%3EA702007970%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665140137&rft_id=info:pmid/35468126&rft_galeid=A702007970&rft_doaj_id=oai_doaj_org_article_a12aeb8b9e0344608538881c2a542b29&rfr_iscdi=true