MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat

Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2022-04, Vol.18 (4), p.e1010157
Hauptverfasser: Debernardi, Juan M, Woods, Daniel P, Li, Kun, Li, Chengxia, Dubcovsky, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e1010157
container_title PLoS genetics
container_volume 18
creator Debernardi, Juan M
Woods, Daniel P
Li, Kun
Li, Chengxia
Dubcovsky, Jorge
description Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.
doi_str_mv 10.1371/journal.pgen.1010157
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2665135936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702224930</galeid><doaj_id>oai_doaj_org_article_453c6ab9b62747a581bb4a2c0c2ad3da</doaj_id><sourcerecordid>A702224930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-f844b6a2f50b6ec85c3319a2fab22c6f9020628cfce5351515f75e4102624c3</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEQkJwyOKP2E4uSKuqQKWForbiajnOJOvFG29jpwV-PQ67rTaoB9AckjjP-44940mS5xjNMBX43coNfafsbNNCN8MoBhMPkkPMGM1EjvKHe-8HyRPvVwhRVpTicXJAWc4LTNhhoj-bcyxINv96cjlfzElmzXdIoyX41HQB2l4FSK9hTGV-qWBcl6quTjdWdSFVLaTBpdp1oXc2bay7gd50bRrMGqI-vVmCCk-TR42yHp7tnkfJxYeTy-NP2eLs4-nxfJFpQXjImiLPK65Iw1DFQRdMU4rL-K0qQjRvSkQQJ4VuNDDKcIxGMMgxIpzkmh4lL7euG-u83FXHS8I5w5SVlEfidEvUTq3kpjdr1f-UThn5Z8H1rVR9MNqCzBnVXFVlxYnIhWIFrqpcEY00UTWtVfR6v8s2VGuoNcQKKDsxnf7pzFK27lqWiIoSi2jwZmfQu6sBfJBr4zXYWFdww7hvxhhHRTnu-9Vf6P2n21GtigcwXeNiXj2ayrlAhJC8pChSs3uoGDWsTewjNCauTwRvJ4Kx1_AjtGrwXp5enP8H--Xf2bNvU_b1HhuvlA1L7-ww3kY_BfMtqHvnfQ_NXUMwkuPU3FZOjlMjd1MTZS_2m3knuh0T-hvVVg88</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665135936</pqid></control><display><type>article</type><title>MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Debernardi, Juan M ; Woods, Daniel P ; Li, Kun ; Li, Chengxia ; Dubcovsky, Jorge</creator><creatorcontrib>Debernardi, Juan M ; Woods, Daniel P ; Li, Kun ; Li, Chengxia ; Dubcovsky, Jorge</creatorcontrib><description>Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010157</identifier><identifier>PMID: 35468125</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Animal reproduction ; Barley ; Biology and Life Sciences ; Breeding success ; Cereals ; Circadian rhythm ; Cold ; Cultivars ; Engineering and Technology ; Flowers &amp; plants ; Flowers - genetics ; Gene expression ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic aspects ; Grasses ; Leaves ; MicroRNA ; miRNA ; Mutation ; Phase transitions ; Photoperiod ; Physical Sciences ; Physiological aspects ; Plants, Flowering of ; Poaceae - genetics ; Proteins ; Repressors ; Reproduction ; Research and Analysis Methods ; Transcription factors ; Triticum - genetics ; Vernalization ; Wheat ; Winter</subject><ispartof>PLoS genetics, 2022-04, Vol.18 (4), p.e1010157</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Debernardi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Debernardi et al 2022 Debernardi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-f844b6a2f50b6ec85c3319a2fab22c6f9020628cfce5351515f75e4102624c3</citedby><cites>FETCH-LOGICAL-c726t-f844b6a2f50b6ec85c3319a2fab22c6f9020628cfce5351515f75e4102624c3</cites><orcidid>0000-0002-1498-5707 ; 0000-0001-8308-1560 ; 0000-0002-4591-7061 ; 0000-0002-7571-4345 ; 0000-0003-4634-8451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35468125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Debernardi, Juan M</creatorcontrib><creatorcontrib>Woods, Daniel P</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Li, Chengxia</creatorcontrib><creatorcontrib>Dubcovsky, Jorge</creatorcontrib><title>MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.</description><subject>Age</subject><subject>Animal reproduction</subject><subject>Barley</subject><subject>Biology and Life Sciences</subject><subject>Breeding success</subject><subject>Cereals</subject><subject>Circadian rhythm</subject><subject>Cold</subject><subject>Cultivars</subject><subject>Engineering and Technology</subject><subject>Flowers &amp; plants</subject><subject>Flowers - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Grasses</subject><subject>Leaves</subject><subject>MicroRNA</subject><subject>miRNA</subject><subject>Mutation</subject><subject>Phase transitions</subject><subject>Photoperiod</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plants, Flowering of</subject><subject>Poaceae - genetics</subject><subject>Proteins</subject><subject>Repressors</subject><subject>Reproduction</subject><subject>Research and Analysis Methods</subject><subject>Transcription factors</subject><subject>Triticum - genetics</subject><subject>Vernalization</subject><subject>Wheat</subject><subject>Winter</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEQkJwyOKP2E4uSKuqQKWForbiajnOJOvFG29jpwV-PQ67rTaoB9AckjjP-44940mS5xjNMBX43coNfafsbNNCN8MoBhMPkkPMGM1EjvKHe-8HyRPvVwhRVpTicXJAWc4LTNhhoj-bcyxINv96cjlfzElmzXdIoyX41HQB2l4FSK9hTGV-qWBcl6quTjdWdSFVLaTBpdp1oXc2bay7gd50bRrMGqI-vVmCCk-TR42yHp7tnkfJxYeTy-NP2eLs4-nxfJFpQXjImiLPK65Iw1DFQRdMU4rL-K0qQjRvSkQQJ4VuNDDKcIxGMMgxIpzkmh4lL7euG-u83FXHS8I5w5SVlEfidEvUTq3kpjdr1f-UThn5Z8H1rVR9MNqCzBnVXFVlxYnIhWIFrqpcEY00UTWtVfR6v8s2VGuoNcQKKDsxnf7pzFK27lqWiIoSi2jwZmfQu6sBfJBr4zXYWFdww7hvxhhHRTnu-9Vf6P2n21GtigcwXeNiXj2ayrlAhJC8pChSs3uoGDWsTewjNCauTwRvJ4Kx1_AjtGrwXp5enP8H--Xf2bNvU_b1HhuvlA1L7-ww3kY_BfMtqHvnfQ_NXUMwkuPU3FZOjlMjd1MTZS_2m3knuh0T-hvVVg88</recordid><startdate>20220425</startdate><enddate>20220425</enddate><creator>Debernardi, Juan M</creator><creator>Woods, Daniel P</creator><creator>Li, Kun</creator><creator>Li, Chengxia</creator><creator>Dubcovsky, Jorge</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1498-5707</orcidid><orcidid>https://orcid.org/0000-0001-8308-1560</orcidid><orcidid>https://orcid.org/0000-0002-4591-7061</orcidid><orcidid>https://orcid.org/0000-0002-7571-4345</orcidid><orcidid>https://orcid.org/0000-0003-4634-8451</orcidid></search><sort><creationdate>20220425</creationdate><title>MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat</title><author>Debernardi, Juan M ; Woods, Daniel P ; Li, Kun ; Li, Chengxia ; Dubcovsky, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-f844b6a2f50b6ec85c3319a2fab22c6f9020628cfce5351515f75e4102624c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Animal reproduction</topic><topic>Barley</topic><topic>Biology and Life Sciences</topic><topic>Breeding success</topic><topic>Cereals</topic><topic>Circadian rhythm</topic><topic>Cold</topic><topic>Cultivars</topic><topic>Engineering and Technology</topic><topic>Flowers &amp; plants</topic><topic>Flowers - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Grasses</topic><topic>Leaves</topic><topic>MicroRNA</topic><topic>miRNA</topic><topic>Mutation</topic><topic>Phase transitions</topic><topic>Photoperiod</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plants, Flowering of</topic><topic>Poaceae - genetics</topic><topic>Proteins</topic><topic>Repressors</topic><topic>Reproduction</topic><topic>Research and Analysis Methods</topic><topic>Transcription factors</topic><topic>Triticum - genetics</topic><topic>Vernalization</topic><topic>Wheat</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debernardi, Juan M</creatorcontrib><creatorcontrib>Woods, Daniel P</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Li, Chengxia</creatorcontrib><creatorcontrib>Dubcovsky, Jorge</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debernardi, Juan M</au><au>Woods, Daniel P</au><au>Li, Kun</au><au>Li, Chengxia</au><au>Dubcovsky, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-04-25</date><risdate>2022</risdate><volume>18</volume><issue>4</issue><spage>e1010157</spage><pages>e1010157-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35468125</pmid><doi>10.1371/journal.pgen.1010157</doi><tpages>e1010157</tpages><orcidid>https://orcid.org/0000-0002-1498-5707</orcidid><orcidid>https://orcid.org/0000-0001-8308-1560</orcidid><orcidid>https://orcid.org/0000-0002-4591-7061</orcidid><orcidid>https://orcid.org/0000-0002-7571-4345</orcidid><orcidid>https://orcid.org/0000-0003-4634-8451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2022-04, Vol.18 (4), p.e1010157
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2665135936
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Age
Animal reproduction
Barley
Biology and Life Sciences
Breeding success
Cereals
Circadian rhythm
Cold
Cultivars
Engineering and Technology
Flowers & plants
Flowers - genetics
Gene expression
Gene Expression Regulation, Plant
Genes, Plant
Genetic aspects
Grasses
Leaves
MicroRNA
miRNA
Mutation
Phase transitions
Photoperiod
Physical Sciences
Physiological aspects
Plants, Flowering of
Poaceae - genetics
Proteins
Repressors
Reproduction
Research and Analysis Methods
Transcription factors
Triticum - genetics
Vernalization
Wheat
Winter
title MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MiR172-APETALA2-like%20genes%20integrate%20vernalization%20and%20plant%20age%20to%20control%20flowering%20time%20in%20wheat&rft.jtitle=PLoS%20genetics&rft.au=Debernardi,%20Juan%20M&rft.date=2022-04-25&rft.volume=18&rft.issue=4&rft.spage=e1010157&rft.pages=e1010157-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010157&rft_dat=%3Cgale_plos_%3EA702224930%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665135936&rft_id=info:pmid/35468125&rft_galeid=A702224930&rft_doaj_id=oai_doaj_org_article_453c6ab9b62747a581bb4a2c0c2ad3da&rfr_iscdi=true