Study of Asian indexes by a newly derived dynamic model

We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-05, Vol.17 (5), p.e0266600-e0266600
Hauptverfasser: Chiang-Lin, Tsung-Jui, Lee, Yong-Shiuan, Shieh, Tzong-Hann, Yen, Chien-Chang, Tsai, Shang-Yueh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0266600
container_issue 5
container_start_page e0266600
container_title PloS one
container_volume 17
creator Chiang-Lin, Tsung-Jui
Lee, Yong-Shiuan
Shieh, Tzong-Hann
Yen, Chien-Chang
Tsai, Shang-Yueh
description We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values.
doi_str_mv 10.1371/journal.pone.0266600
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2658592913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702296076</galeid><doaj_id>oai_doaj_org_article_4def603e97144c0ba6f26c69bc1075a9</doaj_id><sourcerecordid>A702296076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-fd1a9435edc9dcf87051d29d48228881da6e7fe18bcff321fbac7bcede22ef703</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YWLtu_2BshsHYLpLpw5asm0Eo-wgUCuu2WyFLR4mCYqWW3dX_fkrjlnj0YuhCQnrOq_PxZtlrjOaYcvxpE_q2UX6-Cw3MEWGMIfQkO8WCkhkjiD49Op9kL2LcIFTSirHn2QktCyFEJU4zftX1ZsiDzRfRqSZ3jYFbiHk95Cpv4I8fcgOtuwGTm6FRW6fzbTDgX2bPrPIRXo37Wfbr65ef599nF5fflueLi5lmBe5m1mAlClqC0cJoW3FUYkOEKSpCqqrCRjHgFnBVa2spwbZWmtcaDBACliN6lr096O58iHKsOUrCyqoURGCaiOWBMEFt5K51W9UOMign7y5Cu5Kq7Zz2IAsDliEKguOi0KhWzBKmmag1RrxUIml9Hn_r623KGZquVX4iOn1p3Fquwo0UKOkyngQ-jAJtuO4hdnLrogbvVQOhP-SdGiM4S-i7f9DHqxuplUoFuMaG9K_ei8oFR4QIhu605o9QaRlIE0sGsS7dTwI-TgIS08Ftt1J9jHJ59eP_2cvfU_b9EbsG5bt1DL7vXGjiFCwOoG5DjC3YhyZjJPf-vu-G3Ptbjv5OYW-OB_QQdG9o-hfm3vSb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658592913</pqid></control><display><type>article</type><title>Study of Asian indexes by a newly derived dynamic model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chiang-Lin, Tsung-Jui ; Lee, Yong-Shiuan ; Shieh, Tzong-Hann ; Yen, Chien-Chang ; Tsai, Shang-Yueh</creator><contributor>Zhang, Junhuan</contributor><creatorcontrib>Chiang-Lin, Tsung-Jui ; Lee, Yong-Shiuan ; Shieh, Tzong-Hann ; Yen, Chien-Chang ; Tsai, Shang-Yueh ; Zhang, Junhuan</creatorcontrib><description>We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0266600</identifier><identifier>PMID: 35499989</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial intelligence ; Commerce ; Computer and Information Sciences ; Cooling ; Divergence ; Dynamic models ; Dynamical systems ; Efficient markets ; Empirical analysis ; Forecasting ; Heat transfer ; Heat transfer coefficients ; Hypotheses ; Market prices ; Market value ; Methods ; Movement ; Neural networks ; Physical Sciences ; Research and Analysis Methods ; Reversion ; Securities markets ; Signal processing ; Social Sciences ; Statistical analysis ; Stochastic models ; Stock exchanges ; Thermodynamics ; Time series ; Trends</subject><ispartof>PloS one, 2022-05, Vol.17 (5), p.e0266600-e0266600</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Chiang-Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Chiang-Lin et al 2022 Chiang-Lin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-fd1a9435edc9dcf87051d29d48228881da6e7fe18bcff321fbac7bcede22ef703</cites><orcidid>0000-0003-3760-4513 ; 0000-0002-5675-3541 ; 0000-0002-9030-239X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060367/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060367/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35499989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Junhuan</contributor><creatorcontrib>Chiang-Lin, Tsung-Jui</creatorcontrib><creatorcontrib>Lee, Yong-Shiuan</creatorcontrib><creatorcontrib>Shieh, Tzong-Hann</creatorcontrib><creatorcontrib>Yen, Chien-Chang</creatorcontrib><creatorcontrib>Tsai, Shang-Yueh</creatorcontrib><title>Study of Asian indexes by a newly derived dynamic model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values.</description><subject>Artificial intelligence</subject><subject>Commerce</subject><subject>Computer and Information Sciences</subject><subject>Cooling</subject><subject>Divergence</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Efficient markets</subject><subject>Empirical analysis</subject><subject>Forecasting</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Hypotheses</subject><subject>Market prices</subject><subject>Market value</subject><subject>Methods</subject><subject>Movement</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Reversion</subject><subject>Securities markets</subject><subject>Signal processing</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Stock exchanges</subject><subject>Thermodynamics</subject><subject>Time series</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YWLtu_2BshsHYLpLpw5asm0Eo-wgUCuu2WyFLR4mCYqWW3dX_fkrjlnj0YuhCQnrOq_PxZtlrjOaYcvxpE_q2UX6-Cw3MEWGMIfQkO8WCkhkjiD49Op9kL2LcIFTSirHn2QktCyFEJU4zftX1ZsiDzRfRqSZ3jYFbiHk95Cpv4I8fcgOtuwGTm6FRW6fzbTDgX2bPrPIRXo37Wfbr65ef599nF5fflueLi5lmBe5m1mAlClqC0cJoW3FUYkOEKSpCqqrCRjHgFnBVa2spwbZWmtcaDBACliN6lr096O58iHKsOUrCyqoURGCaiOWBMEFt5K51W9UOMign7y5Cu5Kq7Zz2IAsDliEKguOi0KhWzBKmmag1RrxUIml9Hn_r623KGZquVX4iOn1p3Fquwo0UKOkyngQ-jAJtuO4hdnLrogbvVQOhP-SdGiM4S-i7f9DHqxuplUoFuMaG9K_ei8oFR4QIhu605o9QaRlIE0sGsS7dTwI-TgIS08Ftt1J9jHJ59eP_2cvfU_b9EbsG5bt1DL7vXGjiFCwOoG5DjC3YhyZjJPf-vu-G3Ptbjv5OYW-OB_QQdG9o-hfm3vSb</recordid><startdate>20220502</startdate><enddate>20220502</enddate><creator>Chiang-Lin, Tsung-Jui</creator><creator>Lee, Yong-Shiuan</creator><creator>Shieh, Tzong-Hann</creator><creator>Yen, Chien-Chang</creator><creator>Tsai, Shang-Yueh</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3760-4513</orcidid><orcidid>https://orcid.org/0000-0002-5675-3541</orcidid><orcidid>https://orcid.org/0000-0002-9030-239X</orcidid></search><sort><creationdate>20220502</creationdate><title>Study of Asian indexes by a newly derived dynamic model</title><author>Chiang-Lin, Tsung-Jui ; Lee, Yong-Shiuan ; Shieh, Tzong-Hann ; Yen, Chien-Chang ; Tsai, Shang-Yueh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-fd1a9435edc9dcf87051d29d48228881da6e7fe18bcff321fbac7bcede22ef703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Commerce</topic><topic>Computer and Information Sciences</topic><topic>Cooling</topic><topic>Divergence</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Efficient markets</topic><topic>Empirical analysis</topic><topic>Forecasting</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Hypotheses</topic><topic>Market prices</topic><topic>Market value</topic><topic>Methods</topic><topic>Movement</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Reversion</topic><topic>Securities markets</topic><topic>Signal processing</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Stock exchanges</topic><topic>Thermodynamics</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang-Lin, Tsung-Jui</creatorcontrib><creatorcontrib>Lee, Yong-Shiuan</creatorcontrib><creatorcontrib>Shieh, Tzong-Hann</creatorcontrib><creatorcontrib>Yen, Chien-Chang</creatorcontrib><creatorcontrib>Tsai, Shang-Yueh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang-Lin, Tsung-Jui</au><au>Lee, Yong-Shiuan</au><au>Shieh, Tzong-Hann</au><au>Yen, Chien-Chang</au><au>Tsai, Shang-Yueh</au><au>Zhang, Junhuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Asian indexes by a newly derived dynamic model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-05-02</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>e0266600</spage><epage>e0266600</epage><pages>e0266600-e0266600</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35499989</pmid><doi>10.1371/journal.pone.0266600</doi><orcidid>https://orcid.org/0000-0003-3760-4513</orcidid><orcidid>https://orcid.org/0000-0002-5675-3541</orcidid><orcidid>https://orcid.org/0000-0002-9030-239X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-05, Vol.17 (5), p.e0266600-e0266600
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2658592913
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Artificial intelligence
Commerce
Computer and Information Sciences
Cooling
Divergence
Dynamic models
Dynamical systems
Efficient markets
Empirical analysis
Forecasting
Heat transfer
Heat transfer coefficients
Hypotheses
Market prices
Market value
Methods
Movement
Neural networks
Physical Sciences
Research and Analysis Methods
Reversion
Securities markets
Signal processing
Social Sciences
Statistical analysis
Stochastic models
Stock exchanges
Thermodynamics
Time series
Trends
title Study of Asian indexes by a newly derived dynamic model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Asian%20indexes%20by%20a%20newly%20derived%20dynamic%20model&rft.jtitle=PloS%20one&rft.au=Chiang-Lin,%20Tsung-Jui&rft.date=2022-05-02&rft.volume=17&rft.issue=5&rft.spage=e0266600&rft.epage=e0266600&rft.pages=e0266600-e0266600&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0266600&rft_dat=%3Cgale_plos_%3EA702296076%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658592913&rft_id=info:pmid/35499989&rft_galeid=A702296076&rft_doaj_id=oai_doaj_org_article_4def603e97144c0ba6f26c69bc1075a9&rfr_iscdi=true