Study of Asian indexes by a newly derived dynamic model
We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-05, Vol.17 (5), p.e0266600-e0266600 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0266600 |
---|---|
container_issue | 5 |
container_start_page | e0266600 |
container_title | PloS one |
container_volume | 17 |
creator | Chiang-Lin, Tsung-Jui Lee, Yong-Shiuan Shieh, Tzong-Hann Yen, Chien-Chang Tsai, Shang-Yueh |
description | We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values. |
doi_str_mv | 10.1371/journal.pone.0266600 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2658592913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702296076</galeid><doaj_id>oai_doaj_org_article_4def603e97144c0ba6f26c69bc1075a9</doaj_id><sourcerecordid>A702296076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-fd1a9435edc9dcf87051d29d48228881da6e7fe18bcff321fbac7bcede22ef703</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YWLtu_2BshsHYLpLpw5asm0Eo-wgUCuu2WyFLR4mCYqWW3dX_fkrjlnj0YuhCQnrOq_PxZtlrjOaYcvxpE_q2UX6-Cw3MEWGMIfQkO8WCkhkjiD49Op9kL2LcIFTSirHn2QktCyFEJU4zftX1ZsiDzRfRqSZ3jYFbiHk95Cpv4I8fcgOtuwGTm6FRW6fzbTDgX2bPrPIRXo37Wfbr65ef599nF5fflueLi5lmBe5m1mAlClqC0cJoW3FUYkOEKSpCqqrCRjHgFnBVa2spwbZWmtcaDBACliN6lr096O58iHKsOUrCyqoURGCaiOWBMEFt5K51W9UOMign7y5Cu5Kq7Zz2IAsDliEKguOi0KhWzBKmmag1RrxUIml9Hn_r623KGZquVX4iOn1p3Fquwo0UKOkyngQ-jAJtuO4hdnLrogbvVQOhP-SdGiM4S-i7f9DHqxuplUoFuMaG9K_ei8oFR4QIhu605o9QaRlIE0sGsS7dTwI-TgIS08Ftt1J9jHJ59eP_2cvfU_b9EbsG5bt1DL7vXGjiFCwOoG5DjC3YhyZjJPf-vu-G3Ptbjv5OYW-OB_QQdG9o-hfm3vSb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658592913</pqid></control><display><type>article</type><title>Study of Asian indexes by a newly derived dynamic model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chiang-Lin, Tsung-Jui ; Lee, Yong-Shiuan ; Shieh, Tzong-Hann ; Yen, Chien-Chang ; Tsai, Shang-Yueh</creator><contributor>Zhang, Junhuan</contributor><creatorcontrib>Chiang-Lin, Tsung-Jui ; Lee, Yong-Shiuan ; Shieh, Tzong-Hann ; Yen, Chien-Chang ; Tsai, Shang-Yueh ; Zhang, Junhuan</creatorcontrib><description>We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0266600</identifier><identifier>PMID: 35499989</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial intelligence ; Commerce ; Computer and Information Sciences ; Cooling ; Divergence ; Dynamic models ; Dynamical systems ; Efficient markets ; Empirical analysis ; Forecasting ; Heat transfer ; Heat transfer coefficients ; Hypotheses ; Market prices ; Market value ; Methods ; Movement ; Neural networks ; Physical Sciences ; Research and Analysis Methods ; Reversion ; Securities markets ; Signal processing ; Social Sciences ; Statistical analysis ; Stochastic models ; Stock exchanges ; Thermodynamics ; Time series ; Trends</subject><ispartof>PloS one, 2022-05, Vol.17 (5), p.e0266600-e0266600</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Chiang-Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Chiang-Lin et al 2022 Chiang-Lin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-fd1a9435edc9dcf87051d29d48228881da6e7fe18bcff321fbac7bcede22ef703</cites><orcidid>0000-0003-3760-4513 ; 0000-0002-5675-3541 ; 0000-0002-9030-239X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060367/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060367/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35499989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Junhuan</contributor><creatorcontrib>Chiang-Lin, Tsung-Jui</creatorcontrib><creatorcontrib>Lee, Yong-Shiuan</creatorcontrib><creatorcontrib>Shieh, Tzong-Hann</creatorcontrib><creatorcontrib>Yen, Chien-Chang</creatorcontrib><creatorcontrib>Tsai, Shang-Yueh</creatorcontrib><title>Study of Asian indexes by a newly derived dynamic model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values.</description><subject>Artificial intelligence</subject><subject>Commerce</subject><subject>Computer and Information Sciences</subject><subject>Cooling</subject><subject>Divergence</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Efficient markets</subject><subject>Empirical analysis</subject><subject>Forecasting</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Hypotheses</subject><subject>Market prices</subject><subject>Market value</subject><subject>Methods</subject><subject>Movement</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Reversion</subject><subject>Securities markets</subject><subject>Signal processing</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Stock exchanges</subject><subject>Thermodynamics</subject><subject>Time series</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YWLtu_2BshsHYLpLpw5asm0Eo-wgUCuu2WyFLR4mCYqWW3dX_fkrjlnj0YuhCQnrOq_PxZtlrjOaYcvxpE_q2UX6-Cw3MEWGMIfQkO8WCkhkjiD49Op9kL2LcIFTSirHn2QktCyFEJU4zftX1ZsiDzRfRqSZ3jYFbiHk95Cpv4I8fcgOtuwGTm6FRW6fzbTDgX2bPrPIRXo37Wfbr65ef599nF5fflueLi5lmBe5m1mAlClqC0cJoW3FUYkOEKSpCqqrCRjHgFnBVa2spwbZWmtcaDBACliN6lr096O58iHKsOUrCyqoURGCaiOWBMEFt5K51W9UOMign7y5Cu5Kq7Zz2IAsDliEKguOi0KhWzBKmmag1RrxUIml9Hn_r623KGZquVX4iOn1p3Fquwo0UKOkyngQ-jAJtuO4hdnLrogbvVQOhP-SdGiM4S-i7f9DHqxuplUoFuMaG9K_ei8oFR4QIhu605o9QaRlIE0sGsS7dTwI-TgIS08Ftt1J9jHJ59eP_2cvfU_b9EbsG5bt1DL7vXGjiFCwOoG5DjC3YhyZjJPf-vu-G3Ptbjv5OYW-OB_QQdG9o-hfm3vSb</recordid><startdate>20220502</startdate><enddate>20220502</enddate><creator>Chiang-Lin, Tsung-Jui</creator><creator>Lee, Yong-Shiuan</creator><creator>Shieh, Tzong-Hann</creator><creator>Yen, Chien-Chang</creator><creator>Tsai, Shang-Yueh</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3760-4513</orcidid><orcidid>https://orcid.org/0000-0002-5675-3541</orcidid><orcidid>https://orcid.org/0000-0002-9030-239X</orcidid></search><sort><creationdate>20220502</creationdate><title>Study of Asian indexes by a newly derived dynamic model</title><author>Chiang-Lin, Tsung-Jui ; Lee, Yong-Shiuan ; Shieh, Tzong-Hann ; Yen, Chien-Chang ; Tsai, Shang-Yueh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-fd1a9435edc9dcf87051d29d48228881da6e7fe18bcff321fbac7bcede22ef703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Commerce</topic><topic>Computer and Information Sciences</topic><topic>Cooling</topic><topic>Divergence</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Efficient markets</topic><topic>Empirical analysis</topic><topic>Forecasting</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Hypotheses</topic><topic>Market prices</topic><topic>Market value</topic><topic>Methods</topic><topic>Movement</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Reversion</topic><topic>Securities markets</topic><topic>Signal processing</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Stock exchanges</topic><topic>Thermodynamics</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang-Lin, Tsung-Jui</creatorcontrib><creatorcontrib>Lee, Yong-Shiuan</creatorcontrib><creatorcontrib>Shieh, Tzong-Hann</creatorcontrib><creatorcontrib>Yen, Chien-Chang</creatorcontrib><creatorcontrib>Tsai, Shang-Yueh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang-Lin, Tsung-Jui</au><au>Lee, Yong-Shiuan</au><au>Shieh, Tzong-Hann</au><au>Yen, Chien-Chang</au><au>Tsai, Shang-Yueh</au><au>Zhang, Junhuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Asian indexes by a newly derived dynamic model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-05-02</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>e0266600</spage><epage>e0266600</epage><pages>e0266600-e0266600</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We take the stock prices as a dynamic system and characterize its movements by a newly derived dynamic model, called the new Price Reversion Model (nPRM), for which the solution is derived and carefully analyzed under different circumstances. We also develop a procedure of applying the nPRM to real daily closing prices of a stock index. This proposed procedure brings a different perspective to the study of stock prices based on thermodynamics, and the time varying coefficients in the nPRM offer economic meanings of the stock movements. More specifically, the average of smoothed historical data A in the nPRM, analogous to the environment temperature in the Newton's law of cooling, represent an implied equilibrium price. The heat transfer coefficient κ is adapted to be either negative or positive, which illustrates the speed of convergence or divergence of stock prices, respectively. The empirical study of ten Asian stock indexes shows that the nPRM accurately characterizes and forecasts the market values.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35499989</pmid><doi>10.1371/journal.pone.0266600</doi><orcidid>https://orcid.org/0000-0003-3760-4513</orcidid><orcidid>https://orcid.org/0000-0002-5675-3541</orcidid><orcidid>https://orcid.org/0000-0002-9030-239X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-05, Vol.17 (5), p.e0266600-e0266600 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2658592913 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Artificial intelligence Commerce Computer and Information Sciences Cooling Divergence Dynamic models Dynamical systems Efficient markets Empirical analysis Forecasting Heat transfer Heat transfer coefficients Hypotheses Market prices Market value Methods Movement Neural networks Physical Sciences Research and Analysis Methods Reversion Securities markets Signal processing Social Sciences Statistical analysis Stochastic models Stock exchanges Thermodynamics Time series Trends |
title | Study of Asian indexes by a newly derived dynamic model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Asian%20indexes%20by%20a%20newly%20derived%20dynamic%20model&rft.jtitle=PloS%20one&rft.au=Chiang-Lin,%20Tsung-Jui&rft.date=2022-05-02&rft.volume=17&rft.issue=5&rft.spage=e0266600&rft.epage=e0266600&rft.pages=e0266600-e0266600&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0266600&rft_dat=%3Cgale_plos_%3EA702296076%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658592913&rft_id=info:pmid/35499989&rft_galeid=A702296076&rft_doaj_id=oai_doaj_org_article_4def603e97144c0ba6f26c69bc1075a9&rfr_iscdi=true |