Maize leaf disease identification based on WG-MARNet
In deep learning-based maize leaf disease detection, a maize disease identification method called Network based on wavelet threshold-guided bilateral filtering, multi-channel ResNet, and attenuation factor (WG-MARNet) is proposed. This method can solve the problems of noise, background interference,...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-04, Vol.17 (4), p.e0267650-e0267650 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0267650 |
---|---|
container_issue | 4 |
container_start_page | e0267650 |
container_title | PloS one |
container_volume | 17 |
creator | Li, Zongchen Zhou, Guoxiong Hu, Yaowen Chen, Aibin Lu, Chao He, Mingfang Hu, Yahui Wang, Yanfeng |
description | In deep learning-based maize leaf disease detection, a maize disease identification method called Network based on wavelet threshold-guided bilateral filtering, multi-channel ResNet, and attenuation factor (WG-MARNet) is proposed. This method can solve the problems of noise, background interference, and low detection accuracy of maize leaf disease images. To begin, a processing layer called Wavelet threshold guided bilateral filtering (WT-GBF) based on the WG-MARNet model is employed to reduce image noise and perform high and low-frequency decomposition of the input image using WT-GBF. This increases the input image's resistance to environmental interference and feature extraction capability. Secondly, for the multiscale feature fusion technique, an average down-sampling and tiling method is employed to increase feature representation and limit the risk of overfitting. Then, on high and low-frequency multi-channel, an attenuation factor is introduced to optimize the performance instability during training of the deep network. Finally, when the convergence and accuracy are compared, PRelu and Adabound are used instead of the Relu activation function and the Adam optimizer. The experimental results revealed that our method's average recognition accuracy was 97.96%, and the detection time for a single image was 0.278 seconds. The average detection accuracy has been increased. The method lays the groundwork for the precise control of maize diseases in the field. |
doi_str_mv | 10.1371/journal.pone.0267650 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2656781409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701912494</galeid><doaj_id>oai_doaj_org_article_94c7066a1748476fbbc7f882166ba94f</doaj_id><sourcerecordid>A701912494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b387d08b2bd118a3b87017f52a731f873c53ecdbe54b82b73227ecf52cc9b353</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi1nxNPm6EpWhdaC3UopchySS7WbKT7WRG1F9vtjstO9ILyUXCyXPek3PyFsVLCGYQM_hhHYeuVWG2ja2dAUQZrcGj4hgKjCqKAH58cD4qnqW0BqDGnNKnxRGuCccA4eOCXCj_x5bBKlc2PlmVbOkb2_beeaN6H9tS51hT5sOPs-pifvXV9s-LJ06FZF-M-0lx_fnT9emX6vzybHE6P68MFaivNOasAVwj3UDIFdacAchcjRTD0HGGTY2tabStieZIM4wQsybfGyM0rvFJ8Xovuw0xybHfJBGtKeOQAJGJxZ5oolrLbec3qvsto_LyNhC7pVRd702wUhDDAKUKMsIJo05rwxznCFKqlSAua30cqw16YxuTZ9CpMBGd3rR-JZfxpxSgBgCiLPBuFOjizWBTLzc-GRuCam0cbt_NERK8phl98w_6cHcjtVS5Ad-6mOuanaic50kKiIggmZo9QOXV2I032RzO5_gk4f0kITO9_dUv1ZCSXHy7-n_28vuUfXvArqwK_SrFMOxMlKYg2YOmiyl11t0PGQK58_bdNOTO23L0dk57dfhB90l3ZsZ_AbWt8Og</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656781409</pqid></control><display><type>article</type><title>Maize leaf disease identification based on WG-MARNet</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Li, Zongchen ; Zhou, Guoxiong ; Hu, Yaowen ; Chen, Aibin ; Lu, Chao ; He, Mingfang ; Hu, Yahui ; Wang, Yanfeng</creator><creatorcontrib>Li, Zongchen ; Zhou, Guoxiong ; Hu, Yaowen ; Chen, Aibin ; Lu, Chao ; He, Mingfang ; Hu, Yahui ; Wang, Yanfeng</creatorcontrib><description>In deep learning-based maize leaf disease detection, a maize disease identification method called Network based on wavelet threshold-guided bilateral filtering, multi-channel ResNet, and attenuation factor (WG-MARNet) is proposed. This method can solve the problems of noise, background interference, and low detection accuracy of maize leaf disease images. To begin, a processing layer called Wavelet threshold guided bilateral filtering (WT-GBF) based on the WG-MARNet model is employed to reduce image noise and perform high and low-frequency decomposition of the input image using WT-GBF. This increases the input image's resistance to environmental interference and feature extraction capability. Secondly, for the multiscale feature fusion technique, an average down-sampling and tiling method is employed to increase feature representation and limit the risk of overfitting. Then, on high and low-frequency multi-channel, an attenuation factor is introduced to optimize the performance instability during training of the deep network. Finally, when the convergence and accuracy are compared, PRelu and Adabound are used instead of the Relu activation function and the Adam optimizer. The experimental results revealed that our method's average recognition accuracy was 97.96%, and the detection time for a single image was 0.278 seconds. The average detection accuracy has been increased. The method lays the groundwork for the precise control of maize diseases in the field.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0267650</identifier><identifier>PMID: 35483023</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Attenuation ; Background noise ; Biology and Life Sciences ; Computer and Information Sciences ; Corn ; Crop yields ; Deep learning ; Disease ; Disease detection ; Diseases ; Engineering ; Feature extraction ; Filtration ; Identification methods ; Interference ; Leaves ; Machine learning ; Management ; Medical imaging ; Neural networks ; Neural Networks, Computer ; Noise ; Noise reduction ; Pesticides ; Physical Sciences ; Plant diseases ; Plant Leaves ; Research and Analysis Methods ; Tiling ; Vision systems ; Zea mays</subject><ispartof>PloS one, 2022-04, Vol.17 (4), p.e0267650-e0267650</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Li et al 2022 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b387d08b2bd118a3b87017f52a731f873c53ecdbe54b82b73227ecf52cc9b353</citedby><cites>FETCH-LOGICAL-c692t-b387d08b2bd118a3b87017f52a731f873c53ecdbe54b82b73227ecf52cc9b353</cites><orcidid>0000-0002-5142-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050012/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050012/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35483023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zongchen</creatorcontrib><creatorcontrib>Zhou, Guoxiong</creatorcontrib><creatorcontrib>Hu, Yaowen</creatorcontrib><creatorcontrib>Chen, Aibin</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><creatorcontrib>He, Mingfang</creatorcontrib><creatorcontrib>Hu, Yahui</creatorcontrib><creatorcontrib>Wang, Yanfeng</creatorcontrib><title>Maize leaf disease identification based on WG-MARNet</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In deep learning-based maize leaf disease detection, a maize disease identification method called Network based on wavelet threshold-guided bilateral filtering, multi-channel ResNet, and attenuation factor (WG-MARNet) is proposed. This method can solve the problems of noise, background interference, and low detection accuracy of maize leaf disease images. To begin, a processing layer called Wavelet threshold guided bilateral filtering (WT-GBF) based on the WG-MARNet model is employed to reduce image noise and perform high and low-frequency decomposition of the input image using WT-GBF. This increases the input image's resistance to environmental interference and feature extraction capability. Secondly, for the multiscale feature fusion technique, an average down-sampling and tiling method is employed to increase feature representation and limit the risk of overfitting. Then, on high and low-frequency multi-channel, an attenuation factor is introduced to optimize the performance instability during training of the deep network. Finally, when the convergence and accuracy are compared, PRelu and Adabound are used instead of the Relu activation function and the Adam optimizer. The experimental results revealed that our method's average recognition accuracy was 97.96%, and the detection time for a single image was 0.278 seconds. The average detection accuracy has been increased. The method lays the groundwork for the precise control of maize diseases in the field.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Attenuation</subject><subject>Background noise</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Corn</subject><subject>Crop yields</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Disease detection</subject><subject>Diseases</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Filtration</subject><subject>Identification methods</subject><subject>Interference</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Management</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Pesticides</subject><subject>Physical Sciences</subject><subject>Plant diseases</subject><subject>Plant Leaves</subject><subject>Research and Analysis Methods</subject><subject>Tiling</subject><subject>Vision systems</subject><subject>Zea mays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi1nxNPm6EpWhdaC3UopchySS7WbKT7WRG1F9vtjstO9ILyUXCyXPek3PyFsVLCGYQM_hhHYeuVWG2ja2dAUQZrcGj4hgKjCqKAH58cD4qnqW0BqDGnNKnxRGuCccA4eOCXCj_x5bBKlc2PlmVbOkb2_beeaN6H9tS51hT5sOPs-pifvXV9s-LJ06FZF-M-0lx_fnT9emX6vzybHE6P68MFaivNOasAVwj3UDIFdacAchcjRTD0HGGTY2tabStieZIM4wQsybfGyM0rvFJ8Xovuw0xybHfJBGtKeOQAJGJxZ5oolrLbec3qvsto_LyNhC7pVRd702wUhDDAKUKMsIJo05rwxznCFKqlSAua30cqw16YxuTZ9CpMBGd3rR-JZfxpxSgBgCiLPBuFOjizWBTLzc-GRuCam0cbt_NERK8phl98w_6cHcjtVS5Ad-6mOuanaic50kKiIggmZo9QOXV2I032RzO5_gk4f0kITO9_dUv1ZCSXHy7-n_28vuUfXvArqwK_SrFMOxMlKYg2YOmiyl11t0PGQK58_bdNOTO23L0dk57dfhB90l3ZsZ_AbWt8Og</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Li, Zongchen</creator><creator>Zhou, Guoxiong</creator><creator>Hu, Yaowen</creator><creator>Chen, Aibin</creator><creator>Lu, Chao</creator><creator>He, Mingfang</creator><creator>Hu, Yahui</creator><creator>Wang, Yanfeng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5142-4845</orcidid></search><sort><creationdate>20220428</creationdate><title>Maize leaf disease identification based on WG-MARNet</title><author>Li, Zongchen ; Zhou, Guoxiong ; Hu, Yaowen ; Chen, Aibin ; Lu, Chao ; He, Mingfang ; Hu, Yahui ; Wang, Yanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b387d08b2bd118a3b87017f52a731f873c53ecdbe54b82b73227ecf52cc9b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Attenuation</topic><topic>Background noise</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Corn</topic><topic>Crop yields</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Disease detection</topic><topic>Diseases</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Filtration</topic><topic>Identification methods</topic><topic>Interference</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Management</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Pesticides</topic><topic>Physical Sciences</topic><topic>Plant diseases</topic><topic>Plant Leaves</topic><topic>Research and Analysis Methods</topic><topic>Tiling</topic><topic>Vision systems</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zongchen</creatorcontrib><creatorcontrib>Zhou, Guoxiong</creatorcontrib><creatorcontrib>Hu, Yaowen</creatorcontrib><creatorcontrib>Chen, Aibin</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><creatorcontrib>He, Mingfang</creatorcontrib><creatorcontrib>Hu, Yahui</creatorcontrib><creatorcontrib>Wang, Yanfeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zongchen</au><au>Zhou, Guoxiong</au><au>Hu, Yaowen</au><au>Chen, Aibin</au><au>Lu, Chao</au><au>He, Mingfang</au><au>Hu, Yahui</au><au>Wang, Yanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maize leaf disease identification based on WG-MARNet</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-04-28</date><risdate>2022</risdate><volume>17</volume><issue>4</issue><spage>e0267650</spage><epage>e0267650</epage><pages>e0267650-e0267650</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In deep learning-based maize leaf disease detection, a maize disease identification method called Network based on wavelet threshold-guided bilateral filtering, multi-channel ResNet, and attenuation factor (WG-MARNet) is proposed. This method can solve the problems of noise, background interference, and low detection accuracy of maize leaf disease images. To begin, a processing layer called Wavelet threshold guided bilateral filtering (WT-GBF) based on the WG-MARNet model is employed to reduce image noise and perform high and low-frequency decomposition of the input image using WT-GBF. This increases the input image's resistance to environmental interference and feature extraction capability. Secondly, for the multiscale feature fusion technique, an average down-sampling and tiling method is employed to increase feature representation and limit the risk of overfitting. Then, on high and low-frequency multi-channel, an attenuation factor is introduced to optimize the performance instability during training of the deep network. Finally, when the convergence and accuracy are compared, PRelu and Adabound are used instead of the Relu activation function and the Adam optimizer. The experimental results revealed that our method's average recognition accuracy was 97.96%, and the detection time for a single image was 0.278 seconds. The average detection accuracy has been increased. The method lays the groundwork for the precise control of maize diseases in the field.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35483023</pmid><doi>10.1371/journal.pone.0267650</doi><tpages>e0267650</tpages><orcidid>https://orcid.org/0000-0002-5142-4845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-04, Vol.17 (4), p.e0267650-e0267650 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2656781409 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Accuracy Algorithms Attenuation Background noise Biology and Life Sciences Computer and Information Sciences Corn Crop yields Deep learning Disease Disease detection Diseases Engineering Feature extraction Filtration Identification methods Interference Leaves Machine learning Management Medical imaging Neural networks Neural Networks, Computer Noise Noise reduction Pesticides Physical Sciences Plant diseases Plant Leaves Research and Analysis Methods Tiling Vision systems Zea mays |
title | Maize leaf disease identification based on WG-MARNet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maize%20leaf%20disease%20identification%20based%20on%20WG-MARNet&rft.jtitle=PloS%20one&rft.au=Li,%20Zongchen&rft.date=2022-04-28&rft.volume=17&rft.issue=4&rft.spage=e0267650&rft.epage=e0267650&rft.pages=e0267650-e0267650&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0267650&rft_dat=%3Cgale_plos_%3EA701912494%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656781409&rft_id=info:pmid/35483023&rft_galeid=A701912494&rft_doaj_id=oai_doaj_org_article_94c7066a1748476fbbc7f882166ba94f&rfr_iscdi=true |