Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data
The Ordinary Kriging method is a common spatial interpolation algorithm in geostatistics. Because the semivariogram required for kriging interpolation greatly influences this process, optimal fitting of the semivariogram is of major significance for improving the theoretical accuracy of spatial inte...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-04, Vol.17 (4), p.e0266942-e0266942 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0266942 |
---|---|
container_issue | 4 |
container_start_page | e0266942 |
container_title | PloS one |
container_volume | 17 |
creator | Li, Yang Baorong, Zhong Xiaohong, Xu Zijun, Liang |
description | The Ordinary Kriging method is a common spatial interpolation algorithm in geostatistics. Because the semivariogram required for kriging interpolation greatly influences this process, optimal fitting of the semivariogram is of major significance for improving the theoretical accuracy of spatial interpolation. A deep neural network is a machine learning algorithm that can, in principle, be applied to any function, including a semivariogram. Accordingly, a novel spatial interpolation method based on a deep neural network and Ordinary Kriging was proposed in this research, and elevation data were used as a case study. Compared with the semivariogram fitted by the traditional exponential model, spherical model, and Gaussian model, the kriging variance in the proposed method is smaller, which means that the interpolation results are closer to the theoretical results of Ordinary Kriging interpolation. At the same time, this research can simplify processes for a variety of semivariogram analyses. |
doi_str_mv | 10.1371/journal.pone.0266942 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2653544170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701256931</galeid><doaj_id>oai_doaj_org_article_7990413850d0410f95f91f44d7050353</doaj_id><sourcerecordid>A701256931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-5cb7c22ed4fb0edfee41a1127f334ae92d9ac63faed9081bc02580de15f6e2183</originalsourceid><addsrcrecordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ4sfcRJfVqpWPCpWqsTrarn2OHVx46ydFPj2uNts1aI9IB_Gj9_87RnPZNlzjKaYVvjd2g-hlW7a-RamiJQlL8iD7BxzSiYlQfTh0fwsexLjGiFG67J8nJ1RVjBSlOV5djPrOmeV7K1vc29ymUfY2K0M1jdBbvKljKDzdCZzDdDlLQxBumT6Xz78zHufL4K2rQx_8s_BNrZtctv2EDrvDprgYLtfaNnLp9kjI12EZ6O9yL5_eP_t6tPkevFxfjW7nqiSkH7C1LJShIAuzBKBNgAFlhiTylBaSOBEc6lKaiRojmq8VIiwGmnAzJRAcE0vspd73c75KMZsRUFKlqIvcIUSMd8T2su16ILdpDCEl1bcbvjQCBl6qxyIinNUYFozpJNFhjPDsSkKXSGGKKNJ63K8bVhuQCto-5SnE9HTk9auROO3giNKKOdJ4M0oEPzNALEXGxsVOCdb8MPtuwtS45rs3v3qH_T-6EaqkSkA2xqf7lU7UTGrECas5BQnanoPlYZOZaBSaRmb9k8c3p44JKaH330jhxjF_OuX_2cXP07Z10fsCqTrV9G7YVc38RQs9qAKPsYA5pBkjMSuM-6yIXadIcbOSG4vjj_o4HTXCvQv5WkI0Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653544170</pqid></control><display><type>article</type><title>Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Yang ; Baorong, Zhong ; Xiaohong, Xu ; Zijun, Liang</creator><contributor>Nyeem, Hussain Md Abu</contributor><creatorcontrib>Li, Yang ; Baorong, Zhong ; Xiaohong, Xu ; Zijun, Liang ; Nyeem, Hussain Md Abu</creatorcontrib><description>The Ordinary Kriging method is a common spatial interpolation algorithm in geostatistics. Because the semivariogram required for kriging interpolation greatly influences this process, optimal fitting of the semivariogram is of major significance for improving the theoretical accuracy of spatial interpolation. A deep neural network is a machine learning algorithm that can, in principle, be applied to any function, including a semivariogram. Accordingly, a novel spatial interpolation method based on a deep neural network and Ordinary Kriging was proposed in this research, and elevation data were used as a case study. Compared with the semivariogram fitted by the traditional exponential model, spherical model, and Gaussian model, the kriging variance in the proposed method is smaller, which means that the interpolation results are closer to the theoretical results of Ordinary Kriging interpolation. At the same time, this research can simplify processes for a variety of semivariogram analyses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0266942</identifier><identifier>PMID: 35452466</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial neural networks ; Biology and Life Sciences ; Computer and Information Sciences ; Data mining ; Datasets ; Earth Sciences ; Geostatistics ; Interpolation ; Kriging interpolation ; Li, Yang ; Machine learning ; Maximum likelihood method ; Neural networks ; Normal distribution ; Physical Sciences ; Research and Analysis Methods</subject><ispartof>PloS one, 2022-04, Vol.17 (4), p.e0266942-e0266942</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Li et al 2022 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-5cb7c22ed4fb0edfee41a1127f334ae92d9ac63faed9081bc02580de15f6e2183</citedby><cites>FETCH-LOGICAL-c622t-5cb7c22ed4fb0edfee41a1127f334ae92d9ac63faed9081bc02580de15f6e2183</cites><orcidid>0000-0002-9442-7704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032399/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032399/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35452466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nyeem, Hussain Md Abu</contributor><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Baorong, Zhong</creatorcontrib><creatorcontrib>Xiaohong, Xu</creatorcontrib><creatorcontrib>Zijun, Liang</creatorcontrib><title>Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Ordinary Kriging method is a common spatial interpolation algorithm in geostatistics. Because the semivariogram required for kriging interpolation greatly influences this process, optimal fitting of the semivariogram is of major significance for improving the theoretical accuracy of spatial interpolation. A deep neural network is a machine learning algorithm that can, in principle, be applied to any function, including a semivariogram. Accordingly, a novel spatial interpolation method based on a deep neural network and Ordinary Kriging was proposed in this research, and elevation data were used as a case study. Compared with the semivariogram fitted by the traditional exponential model, spherical model, and Gaussian model, the kriging variance in the proposed method is smaller, which means that the interpolation results are closer to the theoretical results of Ordinary Kriging interpolation. At the same time, this research can simplify processes for a variety of semivariogram analyses.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Geostatistics</subject><subject>Interpolation</subject><subject>Kriging interpolation</subject><subject>Li, Yang</subject><subject>Machine learning</subject><subject>Maximum likelihood method</subject><subject>Neural networks</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0uP0zAQxyMEYpeFb4AgEhKCQ4sfcRJfVqpWPCpWqsTrarn2OHVx46ydFPj2uNts1aI9IB_Gj9_87RnPZNlzjKaYVvjd2g-hlW7a-RamiJQlL8iD7BxzSiYlQfTh0fwsexLjGiFG67J8nJ1RVjBSlOV5djPrOmeV7K1vc29ymUfY2K0M1jdBbvKljKDzdCZzDdDlLQxBumT6Xz78zHufL4K2rQx_8s_BNrZtctv2EDrvDprgYLtfaNnLp9kjI12EZ6O9yL5_eP_t6tPkevFxfjW7nqiSkH7C1LJShIAuzBKBNgAFlhiTylBaSOBEc6lKaiRojmq8VIiwGmnAzJRAcE0vspd73c75KMZsRUFKlqIvcIUSMd8T2su16ILdpDCEl1bcbvjQCBl6qxyIinNUYFozpJNFhjPDsSkKXSGGKKNJ63K8bVhuQCto-5SnE9HTk9auROO3giNKKOdJ4M0oEPzNALEXGxsVOCdb8MPtuwtS45rs3v3qH_T-6EaqkSkA2xqf7lU7UTGrECas5BQnanoPlYZOZaBSaRmb9k8c3p44JKaH330jhxjF_OuX_2cXP07Z10fsCqTrV9G7YVc38RQs9qAKPsYA5pBkjMSuM-6yIXadIcbOSG4vjj_o4HTXCvQv5WkI0Q</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Li, Yang</creator><creator>Baorong, Zhong</creator><creator>Xiaohong, Xu</creator><creator>Zijun, Liang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9442-7704</orcidid></search><sort><creationdate>20220422</creationdate><title>Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data</title><author>Li, Yang ; Baorong, Zhong ; Xiaohong, Xu ; Zijun, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-5cb7c22ed4fb0edfee41a1127f334ae92d9ac63faed9081bc02580de15f6e2183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Geostatistics</topic><topic>Interpolation</topic><topic>Kriging interpolation</topic><topic>Li, Yang</topic><topic>Machine learning</topic><topic>Maximum likelihood method</topic><topic>Neural networks</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Baorong, Zhong</creatorcontrib><creatorcontrib>Xiaohong, Xu</creatorcontrib><creatorcontrib>Zijun, Liang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Baorong, Zhong</au><au>Xiaohong, Xu</au><au>Zijun, Liang</au><au>Nyeem, Hussain Md Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-04-22</date><risdate>2022</risdate><volume>17</volume><issue>4</issue><spage>e0266942</spage><epage>e0266942</epage><pages>e0266942-e0266942</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Ordinary Kriging method is a common spatial interpolation algorithm in geostatistics. Because the semivariogram required for kriging interpolation greatly influences this process, optimal fitting of the semivariogram is of major significance for improving the theoretical accuracy of spatial interpolation. A deep neural network is a machine learning algorithm that can, in principle, be applied to any function, including a semivariogram. Accordingly, a novel spatial interpolation method based on a deep neural network and Ordinary Kriging was proposed in this research, and elevation data were used as a case study. Compared with the semivariogram fitted by the traditional exponential model, spherical model, and Gaussian model, the kriging variance in the proposed method is smaller, which means that the interpolation results are closer to the theoretical results of Ordinary Kriging interpolation. At the same time, this research can simplify processes for a variety of semivariogram analyses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35452466</pmid><doi>10.1371/journal.pone.0266942</doi><tpages>e0266942</tpages><orcidid>https://orcid.org/0000-0002-9442-7704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-04, Vol.17 (4), p.e0266942-e0266942 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2653544170 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Analysis Artificial neural networks Biology and Life Sciences Computer and Information Sciences Data mining Datasets Earth Sciences Geostatistics Interpolation Kriging interpolation Li, Yang Machine learning Maximum likelihood method Neural networks Normal distribution Physical Sciences Research and Analysis Methods |
title | Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20semivariogram%20based%20on%20a%20deep%20neural%20network%20to%20Ordinary%20Kriging%20interpolation%20of%20elevation%20data&rft.jtitle=PloS%20one&rft.au=Li,%20Yang&rft.date=2022-04-22&rft.volume=17&rft.issue=4&rft.spage=e0266942&rft.epage=e0266942&rft.pages=e0266942-e0266942&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0266942&rft_dat=%3Cgale_plos_%3EA701256931%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653544170&rft_id=info:pmid/35452466&rft_galeid=A701256931&rft_doaj_id=oai_doaj_org_article_7990413850d0410f95f91f44d7050353&rfr_iscdi=true |