Change in unemployment by social vulnerability among United States counties with rapid increases in COVID-19 incidence-July 1-October 31, 2020

During the COVID-19 pandemic, the unemployment rate in the United States peaked at 14.8% in April 2020. We examined patterns in unemployment following this peak in counties with rapid increases in COVID-19 incidence. We used CDC aggregate county data to identify counties with rapid increases in COVI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-04, Vol.17 (4), p.e0265888-e0265888
Hauptverfasser: Tang, Shichao, Horter, Libby, Bosh, Karin, Kassem, Ahmed M, Kahn, Emily B, Ricaldi, Jessica N, Pao, Leah Zilversmit, Kang, Gloria J, Singleton, Christa-Marie, Liu, Tiebin, Thomas, Isabel, Rao, Carol Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0265888
container_issue 4
container_start_page e0265888
container_title PloS one
container_volume 17
creator Tang, Shichao
Horter, Libby
Bosh, Karin
Kassem, Ahmed M
Kahn, Emily B
Ricaldi, Jessica N
Pao, Leah Zilversmit
Kang, Gloria J
Singleton, Christa-Marie
Liu, Tiebin
Thomas, Isabel
Rao, Carol Y
description During the COVID-19 pandemic, the unemployment rate in the United States peaked at 14.8% in April 2020. We examined patterns in unemployment following this peak in counties with rapid increases in COVID-19 incidence. We used CDC aggregate county data to identify counties with rapid increases in COVID-19 incidence (rapid riser counties) during July 1-October 31, 2020. We used a linear regression model with fixed effect to calculate the change of unemployment rate difference in these counties, stratified by the county's social vulnerability (an indicator compiled by CDC) in the two months before the rapid riser index month compared to the index month plus one month after the index month. Among the 585 (19% of U.S. counties) rapid riser counties identified, the unemployment rate gap between the most and least socially vulnerable counties widened by 0.40 percentage point (p
doi_str_mv 10.1371/journal.pone.0265888
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2652847131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701050187</galeid><doaj_id>oai_doaj_org_article_a921000d57bb4427829ae082e2016ddb</doaj_id><sourcerecordid>A701050187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4901333c3c9ccc573f952c96807d18dbfafdb3e80eb68a9482ba94d26ac8aa633</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkIgkeKPJnFukKbyVTSpEmO7tU4cp3Xl2MV2Bv0T_GbctZtatAsUybGOn_P6nDc5Wfac4DFhFXm_coO3YMZrZ9UY07LgnD_ITknNaF5SzB4e7E-yJyGsMC4YL8vH2QkrJhNaF-Q0-zNdgl0opC0arOrXxm16ZSNqNig4qcGg68FY5aHRRscNgt7ZBbq0OqoWXUSIKiDpBht12vzScYk8rHWb9KRXEFIwKU_nV7OPOam3Ud0qK1X-bTAbRPK5jK5RHjHyDlFM8dPsUQcmqGf79yi7_Pzpx_Rrfj7_MpueneeyrGnMJzUmjDHJZC2lLCrW1QWVdclx1RLeNh10bcMUx6opOdQTTpu0trQEyQFKxkbZy51uajiIvZVBJBcpn1SEkUTMdkTrYCXWXvfgN8KBFjcB5xcCfNTSKAE1JRjjtqiaJvlacVqDwpwqiknZpkJG2Yf9bUPTq1Ymgz2YI9HjE6uXYuGuRZ0sqfC23Dd7Ae9-DipE0esglTFglRtu6ma05Lza1v3qH_T-7vbUAlID2nYu3Su3ouKswgQXmPAqUeN7qPS0qtcy_XedTvGjhLdHCYmJ6ndcwBCCmF18_392fnXMvj5glwpMXAZnhqidDcfgZAdK70LwqrszmWCxHZtbN8R2bMR-bFLai8MPdJd0OyfsL21hES4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652847131</pqid></control><display><type>article</type><title>Change in unemployment by social vulnerability among United States counties with rapid increases in COVID-19 incidence-July 1-October 31, 2020</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tang, Shichao ; Horter, Libby ; Bosh, Karin ; Kassem, Ahmed M ; Kahn, Emily B ; Ricaldi, Jessica N ; Pao, Leah Zilversmit ; Kang, Gloria J ; Singleton, Christa-Marie ; Liu, Tiebin ; Thomas, Isabel ; Rao, Carol Y</creator><contributor>Nelson, Candace C.</contributor><creatorcontrib>Tang, Shichao ; Horter, Libby ; Bosh, Karin ; Kassem, Ahmed M ; Kahn, Emily B ; Ricaldi, Jessica N ; Pao, Leah Zilversmit ; Kang, Gloria J ; Singleton, Christa-Marie ; Liu, Tiebin ; Thomas, Isabel ; Rao, Carol Y ; Nelson, Candace C.</creatorcontrib><description>During the COVID-19 pandemic, the unemployment rate in the United States peaked at 14.8% in April 2020. We examined patterns in unemployment following this peak in counties with rapid increases in COVID-19 incidence. We used CDC aggregate county data to identify counties with rapid increases in COVID-19 incidence (rapid riser counties) during July 1-October 31, 2020. We used a linear regression model with fixed effect to calculate the change of unemployment rate difference in these counties, stratified by the county's social vulnerability (an indicator compiled by CDC) in the two months before the rapid riser index month compared to the index month plus one month after the index month. Among the 585 (19% of U.S. counties) rapid riser counties identified, the unemployment rate gap between the most and least socially vulnerable counties widened by 0.40 percentage point (p&lt;0.01) after experiencing a rapid rise in COVID-19 incidence. Driving the gap were counties with lower socioeconomic status, with a higher percentage of people in racial and ethnic minority groups, and with limited English proficiency. The widened unemployment gap after COVID-19 incidence rapid rise between the most and least socially vulnerable counties suggests that it may take longer for socially and economically disadvantaged communities to recover. Loss of income and benefits due to unemployment could hinder behaviors that prevent spread of COVID-19 (e.g., seeking healthcare) and could impede response efforts including testing and vaccination. Addressing the social needs within these vulnerable communities could help support public health response measures.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0265888</identifier><identifier>PMID: 35442951</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>COVID-19 ; COVID-19 - epidemiology ; Disease control ; Earth Sciences ; Economic aspects ; Economic conditions ; Engineering and Technology ; Ethnicity ; Health care ; Humans ; Incidence ; Medicine and Health Sciences ; Minority &amp; ethnic groups ; Minority Groups ; Pandemics ; People and Places ; Public health ; Regression models ; Social interactions ; Social Sciences ; Social Vulnerability ; Socioeconomics ; Statistics ; Unemployment ; United States - epidemiology ; Vaccination</subject><ispartof>PloS one, 2022-04, Vol.17 (4), p.e0265888-e0265888</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4901333c3c9ccc573f952c96807d18dbfafdb3e80eb68a9482ba94d26ac8aa633</citedby><cites>FETCH-LOGICAL-c692t-4901333c3c9ccc573f952c96807d18dbfafdb3e80eb68a9482ba94d26ac8aa633</cites><orcidid>0000-0001-5392-3106 ; 0000-0003-2503-1690 ; 0000-0003-0330-0554 ; 0000-0003-4053-7841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020703/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020703/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35442951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nelson, Candace C.</contributor><creatorcontrib>Tang, Shichao</creatorcontrib><creatorcontrib>Horter, Libby</creatorcontrib><creatorcontrib>Bosh, Karin</creatorcontrib><creatorcontrib>Kassem, Ahmed M</creatorcontrib><creatorcontrib>Kahn, Emily B</creatorcontrib><creatorcontrib>Ricaldi, Jessica N</creatorcontrib><creatorcontrib>Pao, Leah Zilversmit</creatorcontrib><creatorcontrib>Kang, Gloria J</creatorcontrib><creatorcontrib>Singleton, Christa-Marie</creatorcontrib><creatorcontrib>Liu, Tiebin</creatorcontrib><creatorcontrib>Thomas, Isabel</creatorcontrib><creatorcontrib>Rao, Carol Y</creatorcontrib><title>Change in unemployment by social vulnerability among United States counties with rapid increases in COVID-19 incidence-July 1-October 31, 2020</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>During the COVID-19 pandemic, the unemployment rate in the United States peaked at 14.8% in April 2020. We examined patterns in unemployment following this peak in counties with rapid increases in COVID-19 incidence. We used CDC aggregate county data to identify counties with rapid increases in COVID-19 incidence (rapid riser counties) during July 1-October 31, 2020. We used a linear regression model with fixed effect to calculate the change of unemployment rate difference in these counties, stratified by the county's social vulnerability (an indicator compiled by CDC) in the two months before the rapid riser index month compared to the index month plus one month after the index month. Among the 585 (19% of U.S. counties) rapid riser counties identified, the unemployment rate gap between the most and least socially vulnerable counties widened by 0.40 percentage point (p&lt;0.01) after experiencing a rapid rise in COVID-19 incidence. Driving the gap were counties with lower socioeconomic status, with a higher percentage of people in racial and ethnic minority groups, and with limited English proficiency. The widened unemployment gap after COVID-19 incidence rapid rise between the most and least socially vulnerable counties suggests that it may take longer for socially and economically disadvantaged communities to recover. Loss of income and benefits due to unemployment could hinder behaviors that prevent spread of COVID-19 (e.g., seeking healthcare) and could impede response efforts including testing and vaccination. Addressing the social needs within these vulnerable communities could help support public health response measures.</description><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Disease control</subject><subject>Earth Sciences</subject><subject>Economic aspects</subject><subject>Economic conditions</subject><subject>Engineering and Technology</subject><subject>Ethnicity</subject><subject>Health care</subject><subject>Humans</subject><subject>Incidence</subject><subject>Medicine and Health Sciences</subject><subject>Minority &amp; ethnic groups</subject><subject>Minority Groups</subject><subject>Pandemics</subject><subject>People and Places</subject><subject>Public health</subject><subject>Regression models</subject><subject>Social interactions</subject><subject>Social Sciences</subject><subject>Social Vulnerability</subject><subject>Socioeconomics</subject><subject>Statistics</subject><subject>Unemployment</subject><subject>United States - epidemiology</subject><subject>Vaccination</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkIgkeKPJnFukKbyVTSpEmO7tU4cp3Xl2MV2Bv0T_GbctZtatAsUybGOn_P6nDc5Wfac4DFhFXm_coO3YMZrZ9UY07LgnD_ITknNaF5SzB4e7E-yJyGsMC4YL8vH2QkrJhNaF-Q0-zNdgl0opC0arOrXxm16ZSNqNig4qcGg68FY5aHRRscNgt7ZBbq0OqoWXUSIKiDpBht12vzScYk8rHWb9KRXEFIwKU_nV7OPOam3Ud0qK1X-bTAbRPK5jK5RHjHyDlFM8dPsUQcmqGf79yi7_Pzpx_Rrfj7_MpueneeyrGnMJzUmjDHJZC2lLCrW1QWVdclx1RLeNh10bcMUx6opOdQTTpu0trQEyQFKxkbZy51uajiIvZVBJBcpn1SEkUTMdkTrYCXWXvfgN8KBFjcB5xcCfNTSKAE1JRjjtqiaJvlacVqDwpwqiknZpkJG2Yf9bUPTq1Ymgz2YI9HjE6uXYuGuRZ0sqfC23Dd7Ae9-DipE0esglTFglRtu6ma05Lza1v3qH_T-7vbUAlID2nYu3Su3ouKswgQXmPAqUeN7qPS0qtcy_XedTvGjhLdHCYmJ6ndcwBCCmF18_392fnXMvj5glwpMXAZnhqidDcfgZAdK70LwqrszmWCxHZtbN8R2bMR-bFLai8MPdJd0OyfsL21hES4</recordid><startdate>20220420</startdate><enddate>20220420</enddate><creator>Tang, Shichao</creator><creator>Horter, Libby</creator><creator>Bosh, Karin</creator><creator>Kassem, Ahmed M</creator><creator>Kahn, Emily B</creator><creator>Ricaldi, Jessica N</creator><creator>Pao, Leah Zilversmit</creator><creator>Kang, Gloria J</creator><creator>Singleton, Christa-Marie</creator><creator>Liu, Tiebin</creator><creator>Thomas, Isabel</creator><creator>Rao, Carol Y</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5392-3106</orcidid><orcidid>https://orcid.org/0000-0003-2503-1690</orcidid><orcidid>https://orcid.org/0000-0003-0330-0554</orcidid><orcidid>https://orcid.org/0000-0003-4053-7841</orcidid></search><sort><creationdate>20220420</creationdate><title>Change in unemployment by social vulnerability among United States counties with rapid increases in COVID-19 incidence-July 1-October 31, 2020</title><author>Tang, Shichao ; Horter, Libby ; Bosh, Karin ; Kassem, Ahmed M ; Kahn, Emily B ; Ricaldi, Jessica N ; Pao, Leah Zilversmit ; Kang, Gloria J ; Singleton, Christa-Marie ; Liu, Tiebin ; Thomas, Isabel ; Rao, Carol Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4901333c3c9ccc573f952c96807d18dbfafdb3e80eb68a9482ba94d26ac8aa633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Disease control</topic><topic>Earth Sciences</topic><topic>Economic aspects</topic><topic>Economic conditions</topic><topic>Engineering and Technology</topic><topic>Ethnicity</topic><topic>Health care</topic><topic>Humans</topic><topic>Incidence</topic><topic>Medicine and Health Sciences</topic><topic>Minority &amp; ethnic groups</topic><topic>Minority Groups</topic><topic>Pandemics</topic><topic>People and Places</topic><topic>Public health</topic><topic>Regression models</topic><topic>Social interactions</topic><topic>Social Sciences</topic><topic>Social Vulnerability</topic><topic>Socioeconomics</topic><topic>Statistics</topic><topic>Unemployment</topic><topic>United States - epidemiology</topic><topic>Vaccination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shichao</creatorcontrib><creatorcontrib>Horter, Libby</creatorcontrib><creatorcontrib>Bosh, Karin</creatorcontrib><creatorcontrib>Kassem, Ahmed M</creatorcontrib><creatorcontrib>Kahn, Emily B</creatorcontrib><creatorcontrib>Ricaldi, Jessica N</creatorcontrib><creatorcontrib>Pao, Leah Zilversmit</creatorcontrib><creatorcontrib>Kang, Gloria J</creatorcontrib><creatorcontrib>Singleton, Christa-Marie</creatorcontrib><creatorcontrib>Liu, Tiebin</creatorcontrib><creatorcontrib>Thomas, Isabel</creatorcontrib><creatorcontrib>Rao, Carol Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Shichao</au><au>Horter, Libby</au><au>Bosh, Karin</au><au>Kassem, Ahmed M</au><au>Kahn, Emily B</au><au>Ricaldi, Jessica N</au><au>Pao, Leah Zilversmit</au><au>Kang, Gloria J</au><au>Singleton, Christa-Marie</au><au>Liu, Tiebin</au><au>Thomas, Isabel</au><au>Rao, Carol Y</au><au>Nelson, Candace C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change in unemployment by social vulnerability among United States counties with rapid increases in COVID-19 incidence-July 1-October 31, 2020</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-04-20</date><risdate>2022</risdate><volume>17</volume><issue>4</issue><spage>e0265888</spage><epage>e0265888</epage><pages>e0265888-e0265888</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>During the COVID-19 pandemic, the unemployment rate in the United States peaked at 14.8% in April 2020. We examined patterns in unemployment following this peak in counties with rapid increases in COVID-19 incidence. We used CDC aggregate county data to identify counties with rapid increases in COVID-19 incidence (rapid riser counties) during July 1-October 31, 2020. We used a linear regression model with fixed effect to calculate the change of unemployment rate difference in these counties, stratified by the county's social vulnerability (an indicator compiled by CDC) in the two months before the rapid riser index month compared to the index month plus one month after the index month. Among the 585 (19% of U.S. counties) rapid riser counties identified, the unemployment rate gap between the most and least socially vulnerable counties widened by 0.40 percentage point (p&lt;0.01) after experiencing a rapid rise in COVID-19 incidence. Driving the gap were counties with lower socioeconomic status, with a higher percentage of people in racial and ethnic minority groups, and with limited English proficiency. The widened unemployment gap after COVID-19 incidence rapid rise between the most and least socially vulnerable counties suggests that it may take longer for socially and economically disadvantaged communities to recover. Loss of income and benefits due to unemployment could hinder behaviors that prevent spread of COVID-19 (e.g., seeking healthcare) and could impede response efforts including testing and vaccination. Addressing the social needs within these vulnerable communities could help support public health response measures.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35442951</pmid><doi>10.1371/journal.pone.0265888</doi><tpages>e0265888</tpages><orcidid>https://orcid.org/0000-0001-5392-3106</orcidid><orcidid>https://orcid.org/0000-0003-2503-1690</orcidid><orcidid>https://orcid.org/0000-0003-0330-0554</orcidid><orcidid>https://orcid.org/0000-0003-4053-7841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-04, Vol.17 (4), p.e0265888-e0265888
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2652847131
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects COVID-19
COVID-19 - epidemiology
Disease control
Earth Sciences
Economic aspects
Economic conditions
Engineering and Technology
Ethnicity
Health care
Humans
Incidence
Medicine and Health Sciences
Minority & ethnic groups
Minority Groups
Pandemics
People and Places
Public health
Regression models
Social interactions
Social Sciences
Social Vulnerability
Socioeconomics
Statistics
Unemployment
United States - epidemiology
Vaccination
title Change in unemployment by social vulnerability among United States counties with rapid increases in COVID-19 incidence-July 1-October 31, 2020
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20in%20unemployment%20by%20social%20vulnerability%20among%20United%20States%20counties%20with%20rapid%20increases%20in%20COVID-19%20incidence-July%201-October%2031,%202020&rft.jtitle=PloS%20one&rft.au=Tang,%20Shichao&rft.date=2022-04-20&rft.volume=17&rft.issue=4&rft.spage=e0265888&rft.epage=e0265888&rft.pages=e0265888-e0265888&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0265888&rft_dat=%3Cgale_plos_%3EA701050187%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652847131&rft_id=info:pmid/35442951&rft_galeid=A701050187&rft_doaj_id=oai_doaj_org_article_a921000d57bb4427829ae082e2016ddb&rfr_iscdi=true