Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius
Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to ta...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2022-03, Vol.18 (3), p.e1010376-e1010376 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010376 |
---|---|
container_issue | 3 |
container_start_page | e1010376 |
container_title | PLoS pathogens |
container_volume | 18 |
creator | De Vooght, Linda De Ridder, Karin Hussain, Shahid Stijlemans, Benoît De Baetselier, Patrick Caljon, Guy Van Den Abbeele, Jan |
description | Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association. |
doi_str_mv | 10.1371/journal.ppat.1010376 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2651150490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A699438731</galeid><doaj_id>oai_doaj_org_article_30b1d475eeee4a919881b0dbc3aed4ef</doaj_id><sourcerecordid>A699438731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-34980b284ff9add6da89dbe2af45225ba69cc4db2b8a1d3ef59ef3b3eae3d34a3</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7jr6D0QL3ujFjEmTfuRGWBY_BhYFd70Twmlz2s2QSbpJKs6_N-N0lx3ZG9tCSvKc9-Q9vFn2kpIVZTV9v3GTt2BW4whxRQklrK4eZae0LNmyZjV_fO__JHsWwoYQThmtnmYnrCxqWjXlafbzCvyAUdshj9eYx4DpW0a_G8G64LaYaxvRjwZ2-RT22IA28R0Ys8vRDtoielT5pVNgdMgH40LitNJTeJ496cEEfDGvi-zHp49X51-WF98-r8_PLpZdVdG4ZFw0pC0a3vcClKoUNEK1WEDPy6IoW6hE13HVFm0DVDHsS4E9axkCMsU4sEX2-qA7puZyHkyQRVVSWhIuSCLWB0I52MjR6y34nXSg5d8N5wcJPrkyKBlpqeJ1ienhIKhoGtoS1XYMUPHUeJF9mLtN7RZVhzZ6MEeixydWX8vB_ZKNYMlolQTezgLe3UwYotzq0KExYNFN-3uzpi5Yw0RC3_yDPuxupgZIBrTtXerb7UXlWSUET3KMJmr1AJVehVvdOYu9TvtHBe-OChIT8XccYApBri-__wf79ZjlB7bzKSse-7vZUSL32b41KffZlnO2U9mr-3O_K7oNM_sDsor4kA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651150490</pqid></control><display><type>article</type><title>Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>De Vooght, Linda ; De Ridder, Karin ; Hussain, Shahid ; Stijlemans, Benoît ; De Baetselier, Patrick ; Caljon, Guy ; Van Den Abbeele, Jan</creator><creatorcontrib>De Vooght, Linda ; De Ridder, Karin ; Hussain, Shahid ; Stijlemans, Benoît ; De Baetselier, Patrick ; Caljon, Guy ; Van Den Abbeele, Jan</creatorcontrib><description>Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010376</identifier><identifier>PMID: 35271685</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>African trypanosomiasis ; Animals ; Antibiotics ; Biology and Life Sciences ; Crosstalk ; Developmental stages ; Diptera ; Enterobacteriaceae - genetics ; Enterobacteriaceae - metabolism ; Exocrine glands ; Gene expression ; Genetic aspects ; Genetic engineering ; Health aspects ; Host-parasite relationships ; Infections ; Libraries ; Load distribution ; Medicine and Health Sciences ; Midgut ; Nanobodies ; Panning ; Parasites ; Parasitic diseases ; Research and Analysis Methods ; Single-Domain Antibodies - metabolism ; Symbiosis ; Trypanosoma ; Trypanosoma brucei ; Trypanosoma brucei brucei - genetics ; Trypanosome ; Tsetse Flies - parasitology ; Vectors (Biology)</subject><ispartof>PLoS pathogens, 2022-03, Vol.18 (3), p.e1010376-e1010376</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 De Vooght et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 De Vooght et al 2022 De Vooght et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-34980b284ff9add6da89dbe2af45225ba69cc4db2b8a1d3ef59ef3b3eae3d34a3</citedby><cites>FETCH-LOGICAL-c661t-34980b284ff9add6da89dbe2af45225ba69cc4db2b8a1d3ef59ef3b3eae3d34a3</cites><orcidid>0000-0002-8425-8601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939806/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939806/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35271685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Vooght, Linda</creatorcontrib><creatorcontrib>De Ridder, Karin</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Stijlemans, Benoît</creatorcontrib><creatorcontrib>De Baetselier, Patrick</creatorcontrib><creatorcontrib>Caljon, Guy</creatorcontrib><creatorcontrib>Van Den Abbeele, Jan</creatorcontrib><title>Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association.</description><subject>African trypanosomiasis</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Biology and Life Sciences</subject><subject>Crosstalk</subject><subject>Developmental stages</subject><subject>Diptera</subject><subject>Enterobacteriaceae - genetics</subject><subject>Enterobacteriaceae - metabolism</subject><subject>Exocrine glands</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Health aspects</subject><subject>Host-parasite relationships</subject><subject>Infections</subject><subject>Libraries</subject><subject>Load distribution</subject><subject>Medicine and Health Sciences</subject><subject>Midgut</subject><subject>Nanobodies</subject><subject>Panning</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Research and Analysis Methods</subject><subject>Single-Domain Antibodies - metabolism</subject><subject>Symbiosis</subject><subject>Trypanosoma</subject><subject>Trypanosoma brucei</subject><subject>Trypanosoma brucei brucei - genetics</subject><subject>Trypanosome</subject><subject>Tsetse Flies - parasitology</subject><subject>Vectors (Biology)</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7jr6D0QL3ujFjEmTfuRGWBY_BhYFd70Twmlz2s2QSbpJKs6_N-N0lx3ZG9tCSvKc9-Q9vFn2kpIVZTV9v3GTt2BW4whxRQklrK4eZae0LNmyZjV_fO__JHsWwoYQThmtnmYnrCxqWjXlafbzCvyAUdshj9eYx4DpW0a_G8G64LaYaxvRjwZ2-RT22IA28R0Ys8vRDtoielT5pVNgdMgH40LitNJTeJ496cEEfDGvi-zHp49X51-WF98-r8_PLpZdVdG4ZFw0pC0a3vcClKoUNEK1WEDPy6IoW6hE13HVFm0DVDHsS4E9axkCMsU4sEX2-qA7puZyHkyQRVVSWhIuSCLWB0I52MjR6y34nXSg5d8N5wcJPrkyKBlpqeJ1ienhIKhoGtoS1XYMUPHUeJF9mLtN7RZVhzZ6MEeixydWX8vB_ZKNYMlolQTezgLe3UwYotzq0KExYNFN-3uzpi5Yw0RC3_yDPuxupgZIBrTtXerb7UXlWSUET3KMJmr1AJVehVvdOYu9TvtHBe-OChIT8XccYApBri-__wf79ZjlB7bzKSse-7vZUSL32b41KffZlnO2U9mr-3O_K7oNM_sDsor4kA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>De Vooght, Linda</creator><creator>De Ridder, Karin</creator><creator>Hussain, Shahid</creator><creator>Stijlemans, Benoît</creator><creator>De Baetselier, Patrick</creator><creator>Caljon, Guy</creator><creator>Van Den Abbeele, Jan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8425-8601</orcidid></search><sort><creationdate>20220301</creationdate><title>Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius</title><author>De Vooght, Linda ; De Ridder, Karin ; Hussain, Shahid ; Stijlemans, Benoît ; De Baetselier, Patrick ; Caljon, Guy ; Van Den Abbeele, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-34980b284ff9add6da89dbe2af45225ba69cc4db2b8a1d3ef59ef3b3eae3d34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>African trypanosomiasis</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Biology and Life Sciences</topic><topic>Crosstalk</topic><topic>Developmental stages</topic><topic>Diptera</topic><topic>Enterobacteriaceae - genetics</topic><topic>Enterobacteriaceae - metabolism</topic><topic>Exocrine glands</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Health aspects</topic><topic>Host-parasite relationships</topic><topic>Infections</topic><topic>Libraries</topic><topic>Load distribution</topic><topic>Medicine and Health Sciences</topic><topic>Midgut</topic><topic>Nanobodies</topic><topic>Panning</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Research and Analysis Methods</topic><topic>Single-Domain Antibodies - metabolism</topic><topic>Symbiosis</topic><topic>Trypanosoma</topic><topic>Trypanosoma brucei</topic><topic>Trypanosoma brucei brucei - genetics</topic><topic>Trypanosome</topic><topic>Tsetse Flies - parasitology</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Vooght, Linda</creatorcontrib><creatorcontrib>De Ridder, Karin</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Stijlemans, Benoît</creatorcontrib><creatorcontrib>De Baetselier, Patrick</creatorcontrib><creatorcontrib>Caljon, Guy</creatorcontrib><creatorcontrib>Van Den Abbeele, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Vooght, Linda</au><au>De Ridder, Karin</au><au>Hussain, Shahid</au><au>Stijlemans, Benoît</au><au>De Baetselier, Patrick</au><au>Caljon, Guy</au><au>Van Den Abbeele, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>3</issue><spage>e1010376</spage><epage>e1010376</epage><pages>e1010376-e1010376</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35271685</pmid><doi>10.1371/journal.ppat.1010376</doi><tpages>e1010376</tpages><orcidid>https://orcid.org/0000-0002-8425-8601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2022-03, Vol.18 (3), p.e1010376-e1010376 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2651150490 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | African trypanosomiasis Animals Antibiotics Biology and Life Sciences Crosstalk Developmental stages Diptera Enterobacteriaceae - genetics Enterobacteriaceae - metabolism Exocrine glands Gene expression Genetic aspects Genetic engineering Health aspects Host-parasite relationships Infections Libraries Load distribution Medicine and Health Sciences Midgut Nanobodies Panning Parasites Parasitic diseases Research and Analysis Methods Single-Domain Antibodies - metabolism Symbiosis Trypanosoma Trypanosoma brucei Trypanosoma brucei brucei - genetics Trypanosome Tsetse Flies - parasitology Vectors (Biology) |
title | Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20the%20tsetse-trypanosome%20interplay%20using%20genetically%20engineered%20Sodalis%20glossinidius&rft.jtitle=PLoS%20pathogens&rft.au=De%20Vooght,%20Linda&rft.date=2022-03-01&rft.volume=18&rft.issue=3&rft.spage=e1010376&rft.epage=e1010376&rft.pages=e1010376-e1010376&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010376&rft_dat=%3Cgale_plos_%3EA699438731%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651150490&rft_id=info:pmid/35271685&rft_galeid=A699438731&rft_doaj_id=oai_doaj_org_article_30b1d475eeee4a919881b0dbc3aed4ef&rfr_iscdi=true |