Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data

Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2022-03, Vol.16 (3), p.e0010273
Hauptverfasser: Tedijanto, Christine, Aragie, Solomon, Tadesse, Zerihun, Haile, Mahteme, Zeru, Taye, Nash, Scott D, Wittberg, Dionna M, Gwyn, Sarah, Martin, Diana L, Sturrock, Hugh J W, Lietman, Thomas M, Keenan, Jeremy D, Arnold, Benjamin F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e0010273
container_title PLoS neglected tropical diseases
container_volume 16
creator Tedijanto, Christine
Aragie, Solomon
Tadesse, Zerihun
Haile, Mahteme
Zeru, Taye
Nash, Scott D
Wittberg, Dionna M
Gwyn, Sarah
Martin, Diana L
Sturrock, Hugh J W
Lietman, Thomas M
Keenan, Jeremy D
Arnold, Benjamin F
description Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old (ρ = 0.77) than children 6-9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge.
doi_str_mv 10.1371/journal.pntd.0010273
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2651150338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A699909613</galeid><doaj_id>oai_doaj_org_article_157f2843a5524a1b80ff995075f99447</doaj_id><sourcerecordid>A699909613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-1db147718a7a39fca42b7edb03a284a53133684ce7e09a55a3f97c574b7b0d713</originalsourceid><addsrcrecordid>eNptks-K2zAQxk1p6W7TvkFpDYXSwyaVLCuyLgtL6J-FhfbQnsVYHicKspRKdiBP0VeuvPEuSVl80CB_85vRzJdlbylZUCbo560fggO72Lm-WRBCSSHYs-ySSsbnKeTPT-KL7FWMW0K45BV9mV0wXgguKb3M_v4M2BjdG7fO26EfAubad93gTH-YW9yjzb0eLIR8tbHQHRoDeR9Ab3wHvYm5cS2mbO_yXcA9WHQa8yGOuIjBW782GuxVrq1xx6jzFu-JVzm4Jl-jj7uEAps30MPr7EULNuKb6Zxlv79--bX6Pr_78e12dXM318ui7Oe0qWkpBK1AAJOthrKoBTY1YVBUJXBGGVtWpUaBRALnwFopNBdlLWrSCMpm2fsjd2d9VNMsoyqWnFJOGKuS4vaoaDxs1S6YDsJBeTDq_sKHtYLQG21RUS7aVJalQkUJtK5I20rJieDpKEuRWNdTtaHusNHo0gztGfT8jzMbtfZ7VcmySD0lwKcJEPyfAWOvOhM1WgsO_TD2zSpRVCx1Pss-_Cd9-nWTap12ptIW_bjVEapullJKIpd0ZC2eUKWvwc5o77A16f4s4eNJwgbB9pvo7TA6JJ4Ly6NQBx9jwPZxGJSo0d8PXavR32ryd0p7dzrIx6QHQ7N_6Mb5Gw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651150338</pqid></control><display><type>article</type><title>Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tedijanto, Christine ; Aragie, Solomon ; Tadesse, Zerihun ; Haile, Mahteme ; Zeru, Taye ; Nash, Scott D ; Wittberg, Dionna M ; Gwyn, Sarah ; Martin, Diana L ; Sturrock, Hugh J W ; Lietman, Thomas M ; Keenan, Jeremy D ; Arnold, Benjamin F</creator><contributor>Somily, Ali M.</contributor><creatorcontrib>Tedijanto, Christine ; Aragie, Solomon ; Tadesse, Zerihun ; Haile, Mahteme ; Zeru, Taye ; Nash, Scott D ; Wittberg, Dionna M ; Gwyn, Sarah ; Martin, Diana L ; Sturrock, Hugh J W ; Lietman, Thomas M ; Keenan, Jeremy D ; Arnold, Benjamin F ; Somily, Ali M.</creatorcontrib><description>Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old (ρ = 0.77) than children 6-9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0010273</identifier><identifier>PMID: 35275911</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age groups ; Analysis ; Anti-Bacterial Agents - therapeutic use ; Antibiotics ; Antigens ; Azithromycin ; Biology and Life Sciences ; Blindness ; Care and treatment ; Child ; Child, Preschool ; Children ; Chlamydia ; Chlamydia trachomatis ; Complications and side effects ; Computer and Information Sciences ; Context ; Correlation ; Development and progression ; Disease transmission ; Ethiopia - epidemiology ; Gaussian process ; Geospatial data ; Geostatistics ; Humans ; Immunoglobulin G ; Infant ; Infant, Newborn ; Infections ; Infectious diseases ; Inflammation ; Learning algorithms ; Machine learning ; Medicine and Health Sciences ; Methods ; Nucleotide sequence ; PCR ; People and Places ; Performance prediction ; Physical Sciences ; Prevalence ; Prevention ; Public health ; Research and Analysis Methods ; Risk factors ; Sanitation ; Seroepidemiologic Studies ; Serology ; Sexually transmitted diseases ; Spatial data ; STD ; Trachoma ; Trachoma - prevention &amp; control ; Transmission ; Tropical diseases</subject><ispartof>PLoS neglected tropical diseases, 2022-03, Vol.16 (3), p.e0010273</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-1db147718a7a39fca42b7edb03a284a53133684ce7e09a55a3f97c574b7b0d713</citedby><cites>FETCH-LOGICAL-c624t-1db147718a7a39fca42b7edb03a284a53133684ce7e09a55a3f97c574b7b0d713</cites><orcidid>0000-0002-7118-1457 ; 0000-0001-9996-6742 ; 0000-0001-6105-7295 ; 0000-0001-5741-8537 ; 0000-0003-3403-5765 ; 0000-0003-4967-9627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942265/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942265/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35275911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Somily, Ali M.</contributor><creatorcontrib>Tedijanto, Christine</creatorcontrib><creatorcontrib>Aragie, Solomon</creatorcontrib><creatorcontrib>Tadesse, Zerihun</creatorcontrib><creatorcontrib>Haile, Mahteme</creatorcontrib><creatorcontrib>Zeru, Taye</creatorcontrib><creatorcontrib>Nash, Scott D</creatorcontrib><creatorcontrib>Wittberg, Dionna M</creatorcontrib><creatorcontrib>Gwyn, Sarah</creatorcontrib><creatorcontrib>Martin, Diana L</creatorcontrib><creatorcontrib>Sturrock, Hugh J W</creatorcontrib><creatorcontrib>Lietman, Thomas M</creatorcontrib><creatorcontrib>Keenan, Jeremy D</creatorcontrib><creatorcontrib>Arnold, Benjamin F</creatorcontrib><title>Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old (ρ = 0.77) than children 6-9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge.</description><subject>Age groups</subject><subject>Analysis</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotics</subject><subject>Antigens</subject><subject>Azithromycin</subject><subject>Biology and Life Sciences</subject><subject>Blindness</subject><subject>Care and treatment</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Chlamydia</subject><subject>Chlamydia trachomatis</subject><subject>Complications and side effects</subject><subject>Computer and Information Sciences</subject><subject>Context</subject><subject>Correlation</subject><subject>Development and progression</subject><subject>Disease transmission</subject><subject>Ethiopia - epidemiology</subject><subject>Gaussian process</subject><subject>Geospatial data</subject><subject>Geostatistics</subject><subject>Humans</subject><subject>Immunoglobulin G</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Inflammation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Nucleotide sequence</subject><subject>PCR</subject><subject>People and Places</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Prevalence</subject><subject>Prevention</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Sanitation</subject><subject>Seroepidemiologic Studies</subject><subject>Serology</subject><subject>Sexually transmitted diseases</subject><subject>Spatial data</subject><subject>STD</subject><subject>Trachoma</subject><subject>Trachoma - prevention &amp; control</subject><subject>Transmission</subject><subject>Tropical diseases</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptks-K2zAQxk1p6W7TvkFpDYXSwyaVLCuyLgtL6J-FhfbQnsVYHicKspRKdiBP0VeuvPEuSVl80CB_85vRzJdlbylZUCbo560fggO72Lm-WRBCSSHYs-ySSsbnKeTPT-KL7FWMW0K45BV9mV0wXgguKb3M_v4M2BjdG7fO26EfAubad93gTH-YW9yjzb0eLIR8tbHQHRoDeR9Ab3wHvYm5cS2mbO_yXcA9WHQa8yGOuIjBW782GuxVrq1xx6jzFu-JVzm4Jl-jj7uEAps30MPr7EULNuKb6Zxlv79--bX6Pr_78e12dXM318ui7Oe0qWkpBK1AAJOthrKoBTY1YVBUJXBGGVtWpUaBRALnwFopNBdlLWrSCMpm2fsjd2d9VNMsoyqWnFJOGKuS4vaoaDxs1S6YDsJBeTDq_sKHtYLQG21RUS7aVJalQkUJtK5I20rJieDpKEuRWNdTtaHusNHo0gztGfT8jzMbtfZ7VcmySD0lwKcJEPyfAWOvOhM1WgsO_TD2zSpRVCx1Pss-_Cd9-nWTap12ptIW_bjVEapullJKIpd0ZC2eUKWvwc5o77A16f4s4eNJwgbB9pvo7TA6JJ4Ly6NQBx9jwPZxGJSo0d8PXavR32ryd0p7dzrIx6QHQ7N_6Mb5Gw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Tedijanto, Christine</creator><creator>Aragie, Solomon</creator><creator>Tadesse, Zerihun</creator><creator>Haile, Mahteme</creator><creator>Zeru, Taye</creator><creator>Nash, Scott D</creator><creator>Wittberg, Dionna M</creator><creator>Gwyn, Sarah</creator><creator>Martin, Diana L</creator><creator>Sturrock, Hugh J W</creator><creator>Lietman, Thomas M</creator><creator>Keenan, Jeremy D</creator><creator>Arnold, Benjamin F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7118-1457</orcidid><orcidid>https://orcid.org/0000-0001-9996-6742</orcidid><orcidid>https://orcid.org/0000-0001-6105-7295</orcidid><orcidid>https://orcid.org/0000-0001-5741-8537</orcidid><orcidid>https://orcid.org/0000-0003-3403-5765</orcidid><orcidid>https://orcid.org/0000-0003-4967-9627</orcidid></search><sort><creationdate>20220301</creationdate><title>Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data</title><author>Tedijanto, Christine ; Aragie, Solomon ; Tadesse, Zerihun ; Haile, Mahteme ; Zeru, Taye ; Nash, Scott D ; Wittberg, Dionna M ; Gwyn, Sarah ; Martin, Diana L ; Sturrock, Hugh J W ; Lietman, Thomas M ; Keenan, Jeremy D ; Arnold, Benjamin F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-1db147718a7a39fca42b7edb03a284a53133684ce7e09a55a3f97c574b7b0d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age groups</topic><topic>Analysis</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotics</topic><topic>Antigens</topic><topic>Azithromycin</topic><topic>Biology and Life Sciences</topic><topic>Blindness</topic><topic>Care and treatment</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Chlamydia</topic><topic>Chlamydia trachomatis</topic><topic>Complications and side effects</topic><topic>Computer and Information Sciences</topic><topic>Context</topic><topic>Correlation</topic><topic>Development and progression</topic><topic>Disease transmission</topic><topic>Ethiopia - epidemiology</topic><topic>Gaussian process</topic><topic>Geospatial data</topic><topic>Geostatistics</topic><topic>Humans</topic><topic>Immunoglobulin G</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Inflammation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Nucleotide sequence</topic><topic>PCR</topic><topic>People and Places</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Prevalence</topic><topic>Prevention</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Sanitation</topic><topic>Seroepidemiologic Studies</topic><topic>Serology</topic><topic>Sexually transmitted diseases</topic><topic>Spatial data</topic><topic>STD</topic><topic>Trachoma</topic><topic>Trachoma - prevention &amp; control</topic><topic>Transmission</topic><topic>Tropical diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tedijanto, Christine</creatorcontrib><creatorcontrib>Aragie, Solomon</creatorcontrib><creatorcontrib>Tadesse, Zerihun</creatorcontrib><creatorcontrib>Haile, Mahteme</creatorcontrib><creatorcontrib>Zeru, Taye</creatorcontrib><creatorcontrib>Nash, Scott D</creatorcontrib><creatorcontrib>Wittberg, Dionna M</creatorcontrib><creatorcontrib>Gwyn, Sarah</creatorcontrib><creatorcontrib>Martin, Diana L</creatorcontrib><creatorcontrib>Sturrock, Hugh J W</creatorcontrib><creatorcontrib>Lietman, Thomas M</creatorcontrib><creatorcontrib>Keenan, Jeremy D</creatorcontrib><creatorcontrib>Arnold, Benjamin F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tedijanto, Christine</au><au>Aragie, Solomon</au><au>Tadesse, Zerihun</au><au>Haile, Mahteme</au><au>Zeru, Taye</au><au>Nash, Scott D</au><au>Wittberg, Dionna M</au><au>Gwyn, Sarah</au><au>Martin, Diana L</au><au>Sturrock, Hugh J W</au><au>Lietman, Thomas M</au><au>Keenan, Jeremy D</au><au>Arnold, Benjamin F</au><au>Somily, Ali M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>e0010273</spage><pages>e0010273-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old (ρ = 0.77) than children 6-9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35275911</pmid><doi>10.1371/journal.pntd.0010273</doi><orcidid>https://orcid.org/0000-0002-7118-1457</orcidid><orcidid>https://orcid.org/0000-0001-9996-6742</orcidid><orcidid>https://orcid.org/0000-0001-6105-7295</orcidid><orcidid>https://orcid.org/0000-0001-5741-8537</orcidid><orcidid>https://orcid.org/0000-0003-3403-5765</orcidid><orcidid>https://orcid.org/0000-0003-4967-9627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2022-03, Vol.16 (3), p.e0010273
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_2651150338
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Age groups
Analysis
Anti-Bacterial Agents - therapeutic use
Antibiotics
Antigens
Azithromycin
Biology and Life Sciences
Blindness
Care and treatment
Child
Child, Preschool
Children
Chlamydia
Chlamydia trachomatis
Complications and side effects
Computer and Information Sciences
Context
Correlation
Development and progression
Disease transmission
Ethiopia - epidemiology
Gaussian process
Geospatial data
Geostatistics
Humans
Immunoglobulin G
Infant
Infant, Newborn
Infections
Infectious diseases
Inflammation
Learning algorithms
Machine learning
Medicine and Health Sciences
Methods
Nucleotide sequence
PCR
People and Places
Performance prediction
Physical Sciences
Prevalence
Prevention
Public health
Research and Analysis Methods
Risk factors
Sanitation
Seroepidemiologic Studies
Serology
Sexually transmitted diseases
Spatial data
STD
Trachoma
Trachoma - prevention & control
Transmission
Tropical diseases
title Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20future%20community-level%20ocular%20Chlamydia%20trachomatis%20infection%20prevalence%20using%20serological,%20clinical,%20molecular,%20and%20geospatial%20data&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Tedijanto,%20Christine&rft.date=2022-03-01&rft.volume=16&rft.issue=3&rft.spage=e0010273&rft.pages=e0010273-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0010273&rft_dat=%3Cgale_plos_%3EA699909613%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651150338&rft_id=info:pmid/35275911&rft_galeid=A699909613&rft_doaj_id=oai_doaj_org_article_157f2843a5524a1b80ff995075f99447&rfr_iscdi=true