Modeling and probabilistic analysis of civil aircraft operational risk for suborbital disintegration accidents
To reduce the collision risk to civil airliners caused by suborbital vehicle disintegration events, this paper uses a covariance propagation algorithm to model the debris landing point of suborbital disintegration accidents and gives a collision probability analysis method for civil airliners encoun...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-04, Vol.17 (4), p.e0266514-e0266514 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0266514 |
---|---|
container_issue | 4 |
container_start_page | e0266514 |
container_title | PloS one |
container_volume | 17 |
creator | Chen, Wantong Tian, Shuyu Ren, Shiyu |
description | To reduce the collision risk to civil airliners caused by suborbital vehicle disintegration events, this paper uses a covariance propagation algorithm to model the debris landing point of suborbital disintegration accidents and gives a collision probability analysis method for civil airliners encountering debris during the cruise. Collision warning is performed for airborne risk targets to improve the emergency response capability of the ATC surveillance system to hazardous situations. The algorithm models the three-dimensional spatial motion target localization problem as a Gauss-Markov process, quantifying the location of debris landing points in the vicinity of nominal trajectories. By predicting the aircraft trajectory, the calculation of the inter-target collision probability is converted into an integration problem of a two-dimensional normally distributed probability density function in a circular domain. Compared with the traditional Monte Carlo method, the calculation speed of debris drop points is improved, which can meet the requirements of civil aviation for real-time response to unexpected situations. |
doi_str_mv | 10.1371/journal.pone.0266514 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2648291610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A699719777</galeid><doaj_id>oai_doaj_org_article_2c5c0eb1e32e4c24b9f4c215da6b8fee</doaj_id><sourcerecordid>A699719777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6074-97ae58180eec4f801744478440f31c891daf13fc0fa642b3146273ccbc8fcb813</originalsourceid><addsrcrecordid>eNqNk99rFDEQxxdRbK3-B6ILgujDnckmm01ehFL8cVAp-Os1JNnJXmpuc012i_3vzXnbcit9kDxMmHzmm8xMpiieY7TEpMHvLsMYe-WX29DDElWM1Zg-KI6xINWCVYg8PNgfFU9SukSoJpyxx8URqYlAGNHjov8SWvCu70rVt-U2Bq208y4NzmSP8jfJpTLY0rhr50vloonKDmXYQlSDC5koo0u_ShtimUYdonZD9rUuuX6Abg-VyhjXQj-kp8Ujq3yCZ5M9KX58_PD97PPi_OLT6uz0fGEYauhCNApqjjkCMNRyhBtKacMpRZZgwwVulcXEGmQVo5UmmLKqIcZow63RHJOT4uVed-tDklOpkqwY5ZXADKNMrPZEG9Sl3Ea3UfFGBuXkX0eInVQxV8GDrExtEGgMpAJqKqqFzQbXrWKaW4Cs9X66bdQbaE3ONCo_E52f9G4tu3AtueC5RTQLvJkEYrgaIQ1y45IB71UPYdy_WyCCqt27X_2D3p_dRHUqJ-B6G_K9ZicqT5kQDRZN02RqeQ-VVwsbZ_K_si77ZwFvZwGZGeD30KkxJbn69vX_2Yufc_b1AbsG5Yd1Cn7cfZ40B-keNDGkFMHeFRkjuRuL22rI3VjIaSxy2IvDBt0F3c4B-QNCLQoF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648291610</pqid></control><display><type>article</type><title>Modeling and probabilistic analysis of civil aircraft operational risk for suborbital disintegration accidents</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Wantong ; Tian, Shuyu ; Ren, Shiyu</creator><contributor>Guo, Yanyong</contributor><creatorcontrib>Chen, Wantong ; Tian, Shuyu ; Ren, Shiyu ; Guo, Yanyong</creatorcontrib><description>To reduce the collision risk to civil airliners caused by suborbital vehicle disintegration events, this paper uses a covariance propagation algorithm to model the debris landing point of suborbital disintegration accidents and gives a collision probability analysis method for civil airliners encountering debris during the cruise. Collision warning is performed for airborne risk targets to improve the emergency response capability of the ATC surveillance system to hazardous situations. The algorithm models the three-dimensional spatial motion target localization problem as a Gauss-Markov process, quantifying the location of debris landing points in the vicinity of nominal trajectories. By predicting the aircraft trajectory, the calculation of the inter-target collision probability is converted into an integration problem of a two-dimensional normally distributed probability density function in a circular domain. Compared with the traditional Monte Carlo method, the calculation speed of debris drop points is improved, which can meet the requirements of civil aviation for real-time response to unexpected situations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0266514</identifier><identifier>PMID: 35390104</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accidents ; Accidents, Aviation ; Air traffic control ; Aircraft ; Aircraft accidents & safety ; Algorithms ; Altitude ; Analysis ; Automation ; Aviation ; Causes of ; Civil aviation ; Collision avoidance ; Collision dynamics ; Debris ; Detritus ; Disintegration ; Earth ; Emergency preparedness ; Emergency response ; Engineering and Technology ; Evaluation ; Gaussian process ; Gravity ; Landing ; Localization ; Markov analysis ; Markov processes ; Monte Carlo simulation ; Normal distribution ; Physical Sciences ; Probabilistic analysis ; Probability density function ; Probability density functions ; Propagation ; Research and Analysis Methods ; Risk ; Risk management ; Statistical analysis ; Three dimensional models ; Three dimensional motion ; Time response ; Trajectories ; Vehicles ; Velocity</subject><ispartof>PloS one, 2022-04, Vol.17 (4), p.e0266514-e0266514</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Chen et al 2022 Chen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6074-97ae58180eec4f801744478440f31c891daf13fc0fa642b3146273ccbc8fcb813</citedby><cites>FETCH-LOGICAL-c6074-97ae58180eec4f801744478440f31c891daf13fc0fa642b3146273ccbc8fcb813</cites><orcidid>0000-0003-3295-8347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989324/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989324/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35390104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Guo, Yanyong</contributor><creatorcontrib>Chen, Wantong</creatorcontrib><creatorcontrib>Tian, Shuyu</creatorcontrib><creatorcontrib>Ren, Shiyu</creatorcontrib><title>Modeling and probabilistic analysis of civil aircraft operational risk for suborbital disintegration accidents</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To reduce the collision risk to civil airliners caused by suborbital vehicle disintegration events, this paper uses a covariance propagation algorithm to model the debris landing point of suborbital disintegration accidents and gives a collision probability analysis method for civil airliners encountering debris during the cruise. Collision warning is performed for airborne risk targets to improve the emergency response capability of the ATC surveillance system to hazardous situations. The algorithm models the three-dimensional spatial motion target localization problem as a Gauss-Markov process, quantifying the location of debris landing points in the vicinity of nominal trajectories. By predicting the aircraft trajectory, the calculation of the inter-target collision probability is converted into an integration problem of a two-dimensional normally distributed probability density function in a circular domain. Compared with the traditional Monte Carlo method, the calculation speed of debris drop points is improved, which can meet the requirements of civil aviation for real-time response to unexpected situations.</description><subject>Accidents</subject><subject>Accidents, Aviation</subject><subject>Air traffic control</subject><subject>Aircraft</subject><subject>Aircraft accidents & safety</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Analysis</subject><subject>Automation</subject><subject>Aviation</subject><subject>Causes of</subject><subject>Civil aviation</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Debris</subject><subject>Detritus</subject><subject>Disintegration</subject><subject>Earth</subject><subject>Emergency preparedness</subject><subject>Emergency response</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Gaussian process</subject><subject>Gravity</subject><subject>Landing</subject><subject>Localization</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Probabilistic analysis</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Propagation</subject><subject>Research and Analysis Methods</subject><subject>Risk</subject><subject>Risk management</subject><subject>Statistical analysis</subject><subject>Three dimensional models</subject><subject>Three dimensional motion</subject><subject>Time response</subject><subject>Trajectories</subject><subject>Vehicles</subject><subject>Velocity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99rFDEQxxdRbK3-B6ILgujDnckmm01ehFL8cVAp-Os1JNnJXmpuc012i_3vzXnbcit9kDxMmHzmm8xMpiieY7TEpMHvLsMYe-WX29DDElWM1Zg-KI6xINWCVYg8PNgfFU9SukSoJpyxx8URqYlAGNHjov8SWvCu70rVt-U2Bq208y4NzmSP8jfJpTLY0rhr50vloonKDmXYQlSDC5koo0u_ShtimUYdonZD9rUuuX6Abg-VyhjXQj-kp8Ujq3yCZ5M9KX58_PD97PPi_OLT6uz0fGEYauhCNApqjjkCMNRyhBtKacMpRZZgwwVulcXEGmQVo5UmmLKqIcZow63RHJOT4uVed-tDklOpkqwY5ZXADKNMrPZEG9Sl3Ea3UfFGBuXkX0eInVQxV8GDrExtEGgMpAJqKqqFzQbXrWKaW4Cs9X66bdQbaE3ONCo_E52f9G4tu3AtueC5RTQLvJkEYrgaIQ1y45IB71UPYdy_WyCCqt27X_2D3p_dRHUqJ-B6G_K9ZicqT5kQDRZN02RqeQ-VVwsbZ_K_si77ZwFvZwGZGeD30KkxJbn69vX_2Yufc_b1AbsG5Yd1Cn7cfZ40B-keNDGkFMHeFRkjuRuL22rI3VjIaSxy2IvDBt0F3c4B-QNCLQoF</recordid><startdate>20220407</startdate><enddate>20220407</enddate><creator>Chen, Wantong</creator><creator>Tian, Shuyu</creator><creator>Ren, Shiyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3295-8347</orcidid></search><sort><creationdate>20220407</creationdate><title>Modeling and probabilistic analysis of civil aircraft operational risk for suborbital disintegration accidents</title><author>Chen, Wantong ; Tian, Shuyu ; Ren, Shiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6074-97ae58180eec4f801744478440f31c891daf13fc0fa642b3146273ccbc8fcb813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accidents</topic><topic>Accidents, Aviation</topic><topic>Air traffic control</topic><topic>Aircraft</topic><topic>Aircraft accidents & safety</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Analysis</topic><topic>Automation</topic><topic>Aviation</topic><topic>Causes of</topic><topic>Civil aviation</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Debris</topic><topic>Detritus</topic><topic>Disintegration</topic><topic>Earth</topic><topic>Emergency preparedness</topic><topic>Emergency response</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Gaussian process</topic><topic>Gravity</topic><topic>Landing</topic><topic>Localization</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Probabilistic analysis</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Propagation</topic><topic>Research and Analysis Methods</topic><topic>Risk</topic><topic>Risk management</topic><topic>Statistical analysis</topic><topic>Three dimensional models</topic><topic>Three dimensional motion</topic><topic>Time response</topic><topic>Trajectories</topic><topic>Vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wantong</creatorcontrib><creatorcontrib>Tian, Shuyu</creatorcontrib><creatorcontrib>Ren, Shiyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wantong</au><au>Tian, Shuyu</au><au>Ren, Shiyu</au><au>Guo, Yanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and probabilistic analysis of civil aircraft operational risk for suborbital disintegration accidents</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-04-07</date><risdate>2022</risdate><volume>17</volume><issue>4</issue><spage>e0266514</spage><epage>e0266514</epage><pages>e0266514-e0266514</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To reduce the collision risk to civil airliners caused by suborbital vehicle disintegration events, this paper uses a covariance propagation algorithm to model the debris landing point of suborbital disintegration accidents and gives a collision probability analysis method for civil airliners encountering debris during the cruise. Collision warning is performed for airborne risk targets to improve the emergency response capability of the ATC surveillance system to hazardous situations. The algorithm models the three-dimensional spatial motion target localization problem as a Gauss-Markov process, quantifying the location of debris landing points in the vicinity of nominal trajectories. By predicting the aircraft trajectory, the calculation of the inter-target collision probability is converted into an integration problem of a two-dimensional normally distributed probability density function in a circular domain. Compared with the traditional Monte Carlo method, the calculation speed of debris drop points is improved, which can meet the requirements of civil aviation for real-time response to unexpected situations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35390104</pmid><doi>10.1371/journal.pone.0266514</doi><tpages>e0266514</tpages><orcidid>https://orcid.org/0000-0003-3295-8347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-04, Vol.17 (4), p.e0266514-e0266514 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2648291610 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accidents Accidents, Aviation Air traffic control Aircraft Aircraft accidents & safety Algorithms Altitude Analysis Automation Aviation Causes of Civil aviation Collision avoidance Collision dynamics Debris Detritus Disintegration Earth Emergency preparedness Emergency response Engineering and Technology Evaluation Gaussian process Gravity Landing Localization Markov analysis Markov processes Monte Carlo simulation Normal distribution Physical Sciences Probabilistic analysis Probability density function Probability density functions Propagation Research and Analysis Methods Risk Risk management Statistical analysis Three dimensional models Three dimensional motion Time response Trajectories Vehicles Velocity |
title | Modeling and probabilistic analysis of civil aircraft operational risk for suborbital disintegration accidents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20probabilistic%20analysis%20of%20civil%20aircraft%20operational%20risk%20for%20suborbital%20disintegration%20accidents&rft.jtitle=PloS%20one&rft.au=Chen,%20Wantong&rft.date=2022-04-07&rft.volume=17&rft.issue=4&rft.spage=e0266514&rft.epage=e0266514&rft.pages=e0266514-e0266514&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0266514&rft_dat=%3Cgale_plos_%3EA699719777%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648291610&rft_id=info:pmid/35390104&rft_galeid=A699719777&rft_doaj_id=oai_doaj_org_article_2c5c0eb1e32e4c24b9f4c215da6b8fee&rfr_iscdi=true |