Non-destructive comparative evaluation of fossil amber using terahertz time-domain spectroscopy
Fossilized plant resins, or ambers, offer a unique paleontological window into the history of life. A natural polymer, amber can preserve aspects of ancient environments, including whole organisms, for tens or even hundreds of millions of years. While most amber research involves imaging with visual...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-03, Vol.17 (3), p.e0262983-e0262983 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0262983 |
---|---|
container_issue | 3 |
container_start_page | e0262983 |
container_title | PloS one |
container_volume | 17 |
creator | Barden, Phillip Sosiak, Christine E Grajales, Jonpierre Hawkins, John Rizzo, Louis Clark, Alexander Gatley, Samuel Gatley, Ian Federici, John |
description | Fossilized plant resins, or ambers, offer a unique paleontological window into the history of life. A natural polymer, amber can preserve aspects of ancient environments, including whole organisms, for tens or even hundreds of millions of years. While most amber research involves imaging with visual light, other spectra are increasingly used to characterize both organismal inclusions as well as amber matrix. Terahertz (THz) radiation, which occupies the electromagnetic band between microwave and infrared light wavelengths, is non-ionizing and frequently used in polymer spectroscopy. Here, we evaluate the utility of amber terahertz spectroscopy in a comparative setting for the first time by analyzing the terahertz optical properties of samples from 10 fossil deposits ranging in age from the Miocene to the Early Cretaceous. We recover no clear relationships between amber age or botanical source and terahertz permittivity; however, we do find apparent deposit-specific permittivity among transparent amber samples. By comparing the suitability of multiple permittivity models across sample data we find that models with a distribution of dielectric relaxation times best describe the spectral permittivity of amber. We also demonstrate a process for imaging amber inclusions using terahertz transmission and find that terahertz spectroscopy can be used to identify some synthetic amber forgeries. |
doi_str_mv | 10.1371/journal.pone.0262983 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2645449498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A698800460</galeid><doaj_id>oai_doaj_org_article_30846a7045c74996a4edfe234d18da44</doaj_id><sourcerecordid>A698800460</sourcerecordid><originalsourceid>FETCH-LOGICAL-a645t-edd6179b84a2aa8131ca1320fbd252f04987705294834c4e41dcbd41bcaf173</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx6RJ0_RGWBY_BhYXXPE2nCbpTIa2qUk6uP56053uMpW9kFzkkDzvm-TknCR5idEKkxJ_2NnR9dCuBtvrFcpZXnHyKDnFFckzliPy-Cg-SZ55v0OoIJyxp8kJKeLgBJ0m4pvtM6V9cKMMZq9TabsBHNzGeg_tGEPbp7ZJG-u9aVPoau3S0Zt-kwbtYKtd-JMG0-lM2Q5Mn_pBy-Csl3a4eZ48aaD1-sU8nyXXnz_9uPiaXV59WV-cX2bAaBEyrRTDZVVzCjkAxwRLwCRHTa3yIm8QrXhZoiKvKCdUUk2xkrWiuJbQ4JKcJa8PrkNrvZgz40UevSmtojgS6wOhLOzE4EwH7kZYMOJ2wbqNABeMbLUgiFMGJaKFLGlVMaBaNTonVGGugNLo9XE-baw7raTug4N2Ybrc6c1WbOxe8IqVCE2XeTcbOPtrjMkXnfFSty302o6He_Oi5AhF9M0_6MOvm6kNxAeYvrHxXDmZinNW8WhE2eS1eoCKQ-nOyFhGjYnrC8H7hSAyQf8OGxi9F-vr7__PXv1csm-P2K2GNmy9bcep0vwSpAdQxnLyTjf3ScZITF1wlw0xdYGYuyDKXh1_0L3oruzJXwyRAxo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645449498</pqid></control><display><type>article</type><title>Non-destructive comparative evaluation of fossil amber using terahertz time-domain spectroscopy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Barden, Phillip ; Sosiak, Christine E ; Grajales, Jonpierre ; Hawkins, John ; Rizzo, Louis ; Clark, Alexander ; Gatley, Samuel ; Gatley, Ian ; Federici, John</creator><contributor>Ostroverkhova, Oksana</contributor><creatorcontrib>Barden, Phillip ; Sosiak, Christine E ; Grajales, Jonpierre ; Hawkins, John ; Rizzo, Louis ; Clark, Alexander ; Gatley, Samuel ; Gatley, Ian ; Federici, John ; Ostroverkhova, Oksana</creatorcontrib><description>Fossilized plant resins, or ambers, offer a unique paleontological window into the history of life. A natural polymer, amber can preserve aspects of ancient environments, including whole organisms, for tens or even hundreds of millions of years. While most amber research involves imaging with visual light, other spectra are increasingly used to characterize both organismal inclusions as well as amber matrix. Terahertz (THz) radiation, which occupies the electromagnetic band between microwave and infrared light wavelengths, is non-ionizing and frequently used in polymer spectroscopy. Here, we evaluate the utility of amber terahertz spectroscopy in a comparative setting for the first time by analyzing the terahertz optical properties of samples from 10 fossil deposits ranging in age from the Miocene to the Early Cretaceous. We recover no clear relationships between amber age or botanical source and terahertz permittivity; however, we do find apparent deposit-specific permittivity among transparent amber samples. By comparing the suitability of multiple permittivity models across sample data we find that models with a distribution of dielectric relaxation times best describe the spectral permittivity of amber. We also demonstrate a process for imaging amber inclusions using terahertz transmission and find that terahertz spectroscopy can be used to identify some synthetic amber forgeries.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0262983</identifier><identifier>PMID: 35353830</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amber ; Amber - chemistry ; Auroral kilometric radiation ; Biology and Life Sciences ; Comparative analysis ; Cretaceous ; Dielectric relaxation ; Earth Sciences ; Electromagnetic radiation ; Engineering and Technology ; Fossils ; Inclusions ; Infrared radiation ; Mass spectrometry ; Medical imaging ; Microscopy ; Miocene ; Museums ; Natural polymers ; Nondestructive testing ; Optical properties ; Paleontology ; Paleontology - methods ; Permittivity ; Physical Sciences ; Physics ; Plant fossils ; Polymerization ; Polymers ; Radiation ; Research and Analysis Methods ; Resins ; Resins, Plant ; Scientific imaging ; Spectroscopy ; Spectrum analysis ; Terahertz Spectroscopy ; Wavelengths</subject><ispartof>PloS one, 2022-03, Vol.17 (3), p.e0262983-e0262983</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Barden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Barden et al 2022 Barden et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a645t-edd6179b84a2aa8131ca1320fbd252f04987705294834c4e41dcbd41bcaf173</citedby><cites>FETCH-LOGICAL-a645t-edd6179b84a2aa8131ca1320fbd252f04987705294834c4e41dcbd41bcaf173</cites><orcidid>0000-0001-6277-320X ; 0000-0002-1703-3672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967008/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967008/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35353830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ostroverkhova, Oksana</contributor><creatorcontrib>Barden, Phillip</creatorcontrib><creatorcontrib>Sosiak, Christine E</creatorcontrib><creatorcontrib>Grajales, Jonpierre</creatorcontrib><creatorcontrib>Hawkins, John</creatorcontrib><creatorcontrib>Rizzo, Louis</creatorcontrib><creatorcontrib>Clark, Alexander</creatorcontrib><creatorcontrib>Gatley, Samuel</creatorcontrib><creatorcontrib>Gatley, Ian</creatorcontrib><creatorcontrib>Federici, John</creatorcontrib><title>Non-destructive comparative evaluation of fossil amber using terahertz time-domain spectroscopy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Fossilized plant resins, or ambers, offer a unique paleontological window into the history of life. A natural polymer, amber can preserve aspects of ancient environments, including whole organisms, for tens or even hundreds of millions of years. While most amber research involves imaging with visual light, other spectra are increasingly used to characterize both organismal inclusions as well as amber matrix. Terahertz (THz) radiation, which occupies the electromagnetic band between microwave and infrared light wavelengths, is non-ionizing and frequently used in polymer spectroscopy. Here, we evaluate the utility of amber terahertz spectroscopy in a comparative setting for the first time by analyzing the terahertz optical properties of samples from 10 fossil deposits ranging in age from the Miocene to the Early Cretaceous. We recover no clear relationships between amber age or botanical source and terahertz permittivity; however, we do find apparent deposit-specific permittivity among transparent amber samples. By comparing the suitability of multiple permittivity models across sample data we find that models with a distribution of dielectric relaxation times best describe the spectral permittivity of amber. We also demonstrate a process for imaging amber inclusions using terahertz transmission and find that terahertz spectroscopy can be used to identify some synthetic amber forgeries.</description><subject>Amber</subject><subject>Amber - chemistry</subject><subject>Auroral kilometric radiation</subject><subject>Biology and Life Sciences</subject><subject>Comparative analysis</subject><subject>Cretaceous</subject><subject>Dielectric relaxation</subject><subject>Earth Sciences</subject><subject>Electromagnetic radiation</subject><subject>Engineering and Technology</subject><subject>Fossils</subject><subject>Inclusions</subject><subject>Infrared radiation</subject><subject>Mass spectrometry</subject><subject>Medical imaging</subject><subject>Microscopy</subject><subject>Miocene</subject><subject>Museums</subject><subject>Natural polymers</subject><subject>Nondestructive testing</subject><subject>Optical properties</subject><subject>Paleontology</subject><subject>Paleontology - methods</subject><subject>Permittivity</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Plant fossils</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Radiation</subject><subject>Research and Analysis Methods</subject><subject>Resins</subject><subject>Resins, Plant</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Terahertz Spectroscopy</subject><subject>Wavelengths</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx6RJ0_RGWBY_BhYXXPE2nCbpTIa2qUk6uP56053uMpW9kFzkkDzvm-TknCR5idEKkxJ_2NnR9dCuBtvrFcpZXnHyKDnFFckzliPy-Cg-SZ55v0OoIJyxp8kJKeLgBJ0m4pvtM6V9cKMMZq9TabsBHNzGeg_tGEPbp7ZJG-u9aVPoau3S0Zt-kwbtYKtd-JMG0-lM2Q5Mn_pBy-Csl3a4eZ48aaD1-sU8nyXXnz_9uPiaXV59WV-cX2bAaBEyrRTDZVVzCjkAxwRLwCRHTa3yIm8QrXhZoiKvKCdUUk2xkrWiuJbQ4JKcJa8PrkNrvZgz40UevSmtojgS6wOhLOzE4EwH7kZYMOJ2wbqNABeMbLUgiFMGJaKFLGlVMaBaNTonVGGugNLo9XE-baw7raTug4N2Ybrc6c1WbOxe8IqVCE2XeTcbOPtrjMkXnfFSty302o6He_Oi5AhF9M0_6MOvm6kNxAeYvrHxXDmZinNW8WhE2eS1eoCKQ-nOyFhGjYnrC8H7hSAyQf8OGxi9F-vr7__PXv1csm-P2K2GNmy9bcep0vwSpAdQxnLyTjf3ScZITF1wlw0xdYGYuyDKXh1_0L3oruzJXwyRAxo</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Barden, Phillip</creator><creator>Sosiak, Christine E</creator><creator>Grajales, Jonpierre</creator><creator>Hawkins, John</creator><creator>Rizzo, Louis</creator><creator>Clark, Alexander</creator><creator>Gatley, Samuel</creator><creator>Gatley, Ian</creator><creator>Federici, John</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6277-320X</orcidid><orcidid>https://orcid.org/0000-0002-1703-3672</orcidid></search><sort><creationdate>20220330</creationdate><title>Non-destructive comparative evaluation of fossil amber using terahertz time-domain spectroscopy</title><author>Barden, Phillip ; Sosiak, Christine E ; Grajales, Jonpierre ; Hawkins, John ; Rizzo, Louis ; Clark, Alexander ; Gatley, Samuel ; Gatley, Ian ; Federici, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a645t-edd6179b84a2aa8131ca1320fbd252f04987705294834c4e41dcbd41bcaf173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amber</topic><topic>Amber - chemistry</topic><topic>Auroral kilometric radiation</topic><topic>Biology and Life Sciences</topic><topic>Comparative analysis</topic><topic>Cretaceous</topic><topic>Dielectric relaxation</topic><topic>Earth Sciences</topic><topic>Electromagnetic radiation</topic><topic>Engineering and Technology</topic><topic>Fossils</topic><topic>Inclusions</topic><topic>Infrared radiation</topic><topic>Mass spectrometry</topic><topic>Medical imaging</topic><topic>Microscopy</topic><topic>Miocene</topic><topic>Museums</topic><topic>Natural polymers</topic><topic>Nondestructive testing</topic><topic>Optical properties</topic><topic>Paleontology</topic><topic>Paleontology - methods</topic><topic>Permittivity</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Plant fossils</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Radiation</topic><topic>Research and Analysis Methods</topic><topic>Resins</topic><topic>Resins, Plant</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Terahertz Spectroscopy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barden, Phillip</creatorcontrib><creatorcontrib>Sosiak, Christine E</creatorcontrib><creatorcontrib>Grajales, Jonpierre</creatorcontrib><creatorcontrib>Hawkins, John</creatorcontrib><creatorcontrib>Rizzo, Louis</creatorcontrib><creatorcontrib>Clark, Alexander</creatorcontrib><creatorcontrib>Gatley, Samuel</creatorcontrib><creatorcontrib>Gatley, Ian</creatorcontrib><creatorcontrib>Federici, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barden, Phillip</au><au>Sosiak, Christine E</au><au>Grajales, Jonpierre</au><au>Hawkins, John</au><au>Rizzo, Louis</au><au>Clark, Alexander</au><au>Gatley, Samuel</au><au>Gatley, Ian</au><au>Federici, John</au><au>Ostroverkhova, Oksana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-destructive comparative evaluation of fossil amber using terahertz time-domain spectroscopy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-03-30</date><risdate>2022</risdate><volume>17</volume><issue>3</issue><spage>e0262983</spage><epage>e0262983</epage><pages>e0262983-e0262983</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Fossilized plant resins, or ambers, offer a unique paleontological window into the history of life. A natural polymer, amber can preserve aspects of ancient environments, including whole organisms, for tens or even hundreds of millions of years. While most amber research involves imaging with visual light, other spectra are increasingly used to characterize both organismal inclusions as well as amber matrix. Terahertz (THz) radiation, which occupies the electromagnetic band between microwave and infrared light wavelengths, is non-ionizing and frequently used in polymer spectroscopy. Here, we evaluate the utility of amber terahertz spectroscopy in a comparative setting for the first time by analyzing the terahertz optical properties of samples from 10 fossil deposits ranging in age from the Miocene to the Early Cretaceous. We recover no clear relationships between amber age or botanical source and terahertz permittivity; however, we do find apparent deposit-specific permittivity among transparent amber samples. By comparing the suitability of multiple permittivity models across sample data we find that models with a distribution of dielectric relaxation times best describe the spectral permittivity of amber. We also demonstrate a process for imaging amber inclusions using terahertz transmission and find that terahertz spectroscopy can be used to identify some synthetic amber forgeries.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35353830</pmid><doi>10.1371/journal.pone.0262983</doi><tpages>e0262983</tpages><orcidid>https://orcid.org/0000-0001-6277-320X</orcidid><orcidid>https://orcid.org/0000-0002-1703-3672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-03, Vol.17 (3), p.e0262983-e0262983 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2645449498 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amber Amber - chemistry Auroral kilometric radiation Biology and Life Sciences Comparative analysis Cretaceous Dielectric relaxation Earth Sciences Electromagnetic radiation Engineering and Technology Fossils Inclusions Infrared radiation Mass spectrometry Medical imaging Microscopy Miocene Museums Natural polymers Nondestructive testing Optical properties Paleontology Paleontology - methods Permittivity Physical Sciences Physics Plant fossils Polymerization Polymers Radiation Research and Analysis Methods Resins Resins, Plant Scientific imaging Spectroscopy Spectrum analysis Terahertz Spectroscopy Wavelengths |
title | Non-destructive comparative evaluation of fossil amber using terahertz time-domain spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-destructive%20comparative%20evaluation%20of%20fossil%20amber%20using%20terahertz%20time-domain%20spectroscopy&rft.jtitle=PloS%20one&rft.au=Barden,%20Phillip&rft.date=2022-03-30&rft.volume=17&rft.issue=3&rft.spage=e0262983&rft.epage=e0262983&rft.pages=e0262983-e0262983&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0262983&rft_dat=%3Cgale_plos_%3EA698800460%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645449498&rft_id=info:pmid/35353830&rft_galeid=A698800460&rft_doaj_id=oai_doaj_org_article_30846a7045c74996a4edfe234d18da44&rfr_iscdi=true |